NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Jennrich, Robert I. – Psychometrika, 2001
Identifies a general algorithm for orthogonal rotation and shows that when an algorithm parameter alpha is sufficiently large, the algorithm converges monotonically to a stationary point of the rotation criterion from any starting value. Introduces a modification that does not require a large alpha and discusses the use of this modification as a…
Descriptors: Algorithms, Factor Structure, Orthogonal Rotation
Peer reviewed Peer reviewed
Kiers, Henk A. L.; Groenen, Patrick – Psychometrika, 1996
An iterative majorization algorithm is proposed for orthogonal congruence rotation that is guaranteed to converge from every starting point. In addition, the algorithm is easier to program than the algorithm proposed by F. B. Brokken, which is not guaranteed to converge. The derivation of the algorithm is traced in detail. (SLD)
Descriptors: Algorithms, Comparative Analysis, Matrices, Orthogonal Rotation
Peer reviewed Peer reviewed
Lingoes, James C.; Schonemann, Peter H. – Psychometrika, 1974
Descriptors: Algorithms, Goodness of Fit, Matrices, Orthogonal Rotation
Peer reviewed Peer reviewed
Cureton, Edward E.; Mulaik, Stanley A. – Psychometrika, 1975
Applications to the Promax Rotation are discussed, and it is shown that these procedures solve Thurstone's hitherto intractable "invariant" box problem as well as other more common problems based on real data. (Author/RC)
Descriptors: Algorithms, Comparative Analysis, Factor Analysis, Factor Structure