Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 55 |
Descriptor
Source
Psychometrika | 139 |
Author
De Boeck, Paul | 4 |
Van Mechelen, Iven | 4 |
Bockenholt, Ulf | 3 |
Ceulemans, Eva | 3 |
Cudeck, Robert | 3 |
Heiser, Willem J. | 3 |
Maris, Gunter | 3 |
Bentler, Peter M. | 2 |
Bloxom, Bruce | 2 |
Browne, Michael W. | 2 |
Douglas, Jeffrey A. | 2 |
More ▼ |
Publication Type
Journal Articles | 122 |
Reports - Evaluative | 43 |
Reports - Research | 38 |
Reports - Descriptive | 36 |
Speeches/Meeting Papers | 4 |
Information Analyses | 3 |
Opinion Papers | 2 |
Reports - General | 1 |
Education Level
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 6 | 1 |
Audience
Researchers | 3 |
Location
Netherlands | 4 |
Italy | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Weissman, Alexander – Psychometrika, 2013
Convergence of the expectation-maximization (EM) algorithm to a global optimum of the marginal log likelihood function for unconstrained latent variable models with categorical indicators is presented. The sufficient conditions under which global convergence of the EM algorithm is attainable are provided in an information-theoretic context by…
Descriptors: Item Response Theory, Mathematics, Psychometrics, Mathematical Models
Merkle, Edgar C.; Zeileis, Achim – Psychometrika, 2013
The issue of measurement invariance commonly arises in factor-analytic contexts, with methods for assessment including likelihood ratio tests, Lagrange multiplier tests, and Wald tests. These tests all require advance definition of the number of groups, group membership, and offending model parameters. In this paper, we study tests of measurement…
Descriptors: Factor Analysis, Evaluation Methods, Tests, Psychometrics
Jennrich, Robert I.; Bentler, Peter M. – Psychometrika, 2012
Bi-factor analysis is a form of confirmatory factor analysis originally introduced by Holzinger and Swineford ("Psychometrika" 47:41-54, 1937). The bi-factor model has a general factor, a number of group factors, and an explicit bi-factor structure. Jennrich and Bentler ("Psychometrika" 76:537-549, 2011) introduced an exploratory form of bi-factor…
Descriptors: Factor Structure, Factor Analysis, Models, Comparative Analysis
Bockenholt, Ulf – Psychometrika, 2012
In a number of psychological studies, answers to reasoning vignettes have been shown to result from both intuitive and deliberate response processes. This paper utilizes a psychometric model to separate these two response tendencies. An experimental application shows that the proposed model facilitates the analysis of dual-process item responses…
Descriptors: Psychological Studies, Psychometrics, Item Response Theory, Feedback (Response)
Hessen, David J. – Psychometrika, 2012
A multinormal partial credit model for factor analysis of polytomously scored items with ordered response categories is derived using an extension of the Dutch Identity (Holland in "Psychometrika" 55:5-18, 1990). In the model, latent variables are assumed to have a multivariate normal distribution conditional on unweighted sums of item…
Descriptors: Foreign Countries, Factor Analysis, Testing, Scoring
Maris, Gunter; van der Maas, Han – Psychometrika, 2012
Starting from an explicit scoring rule for time limit tasks incorporating both response time and accuracy, and a definite trade-off between speed and accuracy, a response model is derived. Since the scoring rule is interpreted as a sufficient statistic, the model belongs to the exponential family. The various marginal and conditional distributions…
Descriptors: Item Response Theory, Scoring, Reaction Time, Accuracy
Anselmi, Pasquale; Robusto, Egidio; Stefanutti, Luca – Psychometrika, 2012
The Gain-Loss model is a probabilistic skill multimap model for assessing learning processes. In practical applications, more than one skill multimap could be plausible, while none corresponds to the true one. The article investigates whether constraining the error probabilities is a way of uncovering the best skill assignment among a number of…
Descriptors: Item Response Theory, Learning Processes, Simulation, Probability
Molenaar, Dylan; Dolan, Conor V.; de Boeck, Paul – Psychometrika, 2012
The Graded Response Model (GRM; Samejima, "Estimation of ability using a response pattern of graded scores," Psychometric Monograph No. 17, Richmond, VA: The Psychometric Society, 1969) can be derived by assuming a linear regression of a continuous variable, Z, on the trait, [theta], to underlie the ordinal item scores (Takane & de Leeuw in…
Descriptors: Simulation, Regression (Statistics), Psychometrics, Item Response Theory
Yuan, Ke-Hai; Zhang, Zhiyong – Psychometrika, 2012
The paper develops a two-stage robust procedure for structural equation modeling (SEM) and an R package "rsem" to facilitate the use of the procedure by applied researchers. In the first stage, M-estimates of the saturated mean vector and covariance matrix of all variables are obtained. Those corresponding to the substantive variables…
Descriptors: Structural Equation Models, Tests, Federal Aid, Psychometrics
Yuan, Ke-Hai; Cheng, Ying; Zhang, Wei – Psychometrika, 2010
This paper studies changes of standard errors (SE) of the normal-distribution-based maximum likelihood estimates (MLE) for confirmatory factor models as model parameters vary. Using logical analysis, simplified formulas and numerical verification, monotonic relationships between SEs and factor loadings as well as unique variances are found.…
Descriptors: Factor Analysis, Statistical Analysis, Error of Measurement, Models
Bauer, Daniel J. – Psychometrika, 2009
When using linear models for cluster-correlated or longitudinal data, a common modeling practice is to begin by fitting a relatively simple model and then to increase the model complexity in steps. New predictors might be added to the model, or a more complex covariance structure might be specified for the observations. When fitting models for…
Descriptors: Goodness of Fit, Computation, Models, Predictor Variables
Bentler, Peter M. – Psychometrika, 2009
As pointed out by Sijtsma ("in press"), coefficient alpha is inappropriate as a single summary of the internal consistency of a composite score. Better estimators of internal consistency are available. In addition to those mentioned by Sijtsma, an old dimension-free coefficient and structural equation model based coefficients are…
Descriptors: Structural Equation Models, Reliability, Psychometrics
Draxler, Clemens – Psychometrika, 2010
This paper is concerned with supplementing statistical tests for the Rasch model so that additionally to the probability of the error of the first kind (Type I probability) the probability of the error of the second kind (Type II probability) can be controlled at a predetermined level by basing the test on the appropriate number of observations.…
Descriptors: Statistical Analysis, Probability, Sample Size, Error of Measurement
Deboeck, Pascal R.; Boker, Steven M. – Psychometrika, 2010
Complex intraindividual variability observed in psychology may be well described using differential equations. It is difficult, however, to apply differential equation models in psychological contexts, as time series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error. Furthermore, current methods for…
Descriptors: Psychometrics, Models, Statistical Analysis, Measurement
Poon, Wai-Yin; Wang, Hai-Bin – Psychometrika, 2010
A new class of parametric models that generalize the multivariate probit model and the errors-in-variables model is developed to model and analyze ordinal data. A general model structure is assumed to accommodate the information that is obtained via surrogate variables. A hybrid Gibbs sampler is developed to estimate the model parameters. To…
Descriptors: Correlation, Psychometrics, Models, Measurement