Descriptor
Source
Psychometrika | 7 |
Author
Ponocny, Ivo | 2 |
Arminger, Gerhard | 1 |
De Boeck, Paul | 1 |
DeSarbo, Wayne S. | 1 |
Fischer, Gerhard H. | 1 |
Hutchinson, J. Wesley | 1 |
Leenen, Iwin | 1 |
Mungale, Amitabh | 1 |
Muthen, Bengt O. | 1 |
Rosenberg, Seymour | 1 |
Van Mechelen, Iven | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Evaluative | 4 |
Reports - Descriptive | 2 |
Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating

Leenen, Iwin; Van Mechelen, Iven; De Boeck, Paul; Rosenberg, Seymour – Psychometrika, 1999
Presents a three-way, three-mode extension of the two-way, two-mode hierarchical classes model of P. De Boeck and S. Rosenberg (1998) for the analysis of individual differences in binary object x attribute arrays. Illustrates the model with data on psychiatric diagnosis and discusses the relation between the model and other extant models. (SLD)
Descriptors: Algorithms, Individual Differences, Models, Set Theory

Ponocny, Ivo – Psychometrika, 2000
Introduces a new algorithm for obtaining exact person fit indexes for the Rasch model. The algorithm realizes most tests for a general family of alternative hypotheses, including tests concerning differential item functioning. The method is also used as a goodness-of-fit test in some circumstances. Simulated examples and an empirical investigation…
Descriptors: Algorithms, Goodness of Fit, Item Bias, Simulation

Arminger, Gerhard; Muthen, Bengt O. – Psychometrika, 1998
Nonlinear latent variable models are specified that include quadratic forms and interactions of latent regressor variable as special cases. To estimate the parameters, the models are put in a Bayesian framework with conjugate priors for the parameters. The proposed estimation methods are illustrated by two simulation studies. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Mathematical Models

Verboon, Peter; van der Lans, Ivo A. – Psychometrika, 1994
A method for robust canonical discriminant analysis via two robust objective loss functions is discussed. Majorization is used at several stages in the minimization procedure to obtain a monotonically convergent algorithm. A simulation study and empirical data illustrate the procedure. (SLD)
Descriptors: Algorithms, Classification, Discriminant Analysis, Least Squares Statistics

Hutchinson, J. Wesley; Mungale, Amitabh – Psychometrika, 1997
A nonmetric algorithm, pairwise partitioning, is developed to identify feature-based similarity structures. Presents theorems about the validity of the features identified by the algorithm, and reports results of Monte Carlo simulations that estimate the probabilities of identifying valid features for different feature structures and amounts of…
Descriptors: Algorithms, Error of Measurement, Estimation (Mathematics), Identification

DeSarbo, Wayne S.; And Others – Psychometrika, 1989
A method is presented that simultaneously estimates cluster membership and corresponding regression functions for a sample of observations or subjects. This methodology is presented with the simulated annealing-based algorithm. A set of Monte Carlo analyses is included to demonstrate the performance of the algorithm. (SLD)
Descriptors: Algorithms, Cluster Analysis, Estimation (Mathematics), Least Squares Statistics

Fischer, Gerhard H.; Ponocny, Ivo – Psychometrika, 1994
An extension to the partial credit model, the linear partial credit model, is considered under the assumption of a certain linear decomposition of the item x category parameters into basic parameters. A conditional maximum likelihood algorithm for estimating basic parameters is presented and illustrated with simulation and an empirical study. (SLD)
Descriptors: Algorithms, Change, Estimation (Mathematics), Item Response Theory