NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hansen, Spencer; Rice, Kenneth – Research Synthesis Methods, 2022
Meta-analysis of proportions is conceptually simple: Faced with a binary outcome in multiple studies, we seek inference on some overall proportion of successes/failures. Under common effect models, exact inference has long been available, but is not when we more realistically allow for heterogeneity of the proportions. Instead a wide range of…
Descriptors: Meta Analysis, Effect Size, Statistical Inference, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Mathur, Maya B.; VanderWeele, Tyler J. – Research Synthesis Methods, 2021
Meta-regression analyses usually focus on estimating and testing differences in average effect sizes between individual levels of each meta-regression covariate in turn. These metrics are useful but have limitations: they consider each covariate individually, rather than in combination, and they characterize only the mean of a potentially…
Descriptors: Regression (Statistics), Meta Analysis, Effect Size, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Brannick, Michael T.; French, Kimberly A.; Rothstein, Hannah R.; Kiselica, Andrew M.; Apostoloski, Nenad – Research Synthesis Methods, 2021
Tolerance intervals provide a bracket intended to contain a percentage (e.g., 80%) of a population distribution given sample estimates of the mean and variance. In random-effects meta-analysis, tolerance intervals should contain researcher-specified proportions of underlying population effect sizes. Using Monte Carlo simulation, we investigated…
Descriptors: Meta Analysis, Credibility, Intervals, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Domínguez Islas, Clara; Rice, Kenneth M. – Research Synthesis Methods, 2022
Bayesian methods seem a natural choice for combining sources of evidence in meta-analyses. However, in practice, their sensitivity to the choice of prior distribution is much less attractive, particularly for parameters describing heterogeneity. A recent non-Bayesian approach to fixed-effects meta-analysis provides novel ways to think about…
Descriptors: Bayesian Statistics, Evidence, Meta Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Du, Han; Bradbury, Thomas N.; Lavner, Justin A.; Meltzer, Andrea L.; McNulty, James K.; Neff, Lisa A.; Karney, Benjamin R. – Research Synthesis Methods, 2020
Researchers often seek to synthesize results of multiple studies on the same topic to draw statistical or substantive conclusions and to estimate effect sizes that will inform power analyses for future research. The most popular synthesis approach is meta-analysis. There have been few discussions and applications of other synthesis approaches.…
Descriptors: Bayesian Statistics, Meta Analysis, Statistical Inference, Synthesis
Peer reviewed Peer reviewed
Direct linkDirect link
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Held, Leonhard; Matthews, Robert; Ott, Manuela; Pawel, Samuel – Research Synthesis Methods, 2022
It is now widely accepted that the standard inferential toolkit used by the scientific research community--null-hypothesis significance testing (NHST)--is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches for evidence assessment. This lack of consensus reflects…
Descriptors: Bayesian Statistics, Statistical Inference, Hypothesis Testing, Credibility
Peer reviewed Peer reviewed
Direct linkDirect link
Günhan, Burak Kürsad; Friede, Tim; Held, Leonhard – Research Synthesis Methods, 2018
Network meta-analysis (NMA) is gaining popularity for comparing multiple treatments in a single analysis. Generalized linear mixed models provide a unifying framework for NMA, allow us to analyze datasets with dichotomous, continuous or count endpoints, and take into account multiarm trials, potential heterogeneity between trials and network…
Descriptors: Meta Analysis, Regression (Statistics), Statistical Inference, Probability