NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rrita Zejnullahi; Larry V. Hedges – Research Synthesis Methods, 2024
Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods…
Descriptors: Robustness (Statistics), Meta Analysis, Sample Size, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Borenstein – Research Synthesis Methods, 2024
In any meta-analysis, it is critically important to report the dispersion in effects as well as the mean effect. If an intervention has a moderate clinical impact "on average" we also need to know if the impact is moderate for all relevant populations, or if it varies from trivial in some to major in others. Or indeed, if the…
Descriptors: Meta Analysis, Error Patterns, Statistical Analysis, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Timo Gnambs; Ulrich Schroeders – Research Synthesis Methods, 2024
Meta-analyses of treatment effects in randomized control trials are often faced with the problem of missing information required to calculate effect sizes and their sampling variances. Particularly, correlations between pre- and posttest scores are frequently not available. As an ad-hoc solution, researchers impute a constant value for the missing…
Descriptors: Accuracy, Meta Analysis, Randomized Controlled Trials, Effect Size