Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Accuracy | 5 |
Randomized Controlled Trials | 5 |
Comparative Analysis | 2 |
Computer Software | 2 |
Correlation | 2 |
Interrater Reliability | 2 |
Medical Research | 2 |
Meta Analysis | 2 |
Outcomes of Treatment | 2 |
Bias | 1 |
Classification | 1 |
More ▼ |
Source
Research Synthesis Methods | 5 |
Author
Amanda Konet | 1 |
Armijo-Olivo, Susan | 1 |
Barbara Nussbaumer-Streit | 1 |
Campbell, Sandy | 1 |
Chan, Kelvin K. W. | 1 |
Cheng, Sierra | 1 |
Craig, Rodger | 1 |
Gerald Gartlehner | 1 |
Graham Booth | 1 |
Ian Thomas | 1 |
Karen Crotty | 1 |
More ▼ |
Publication Type
Journal Articles | 5 |
Reports - Research | 4 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Gerald Gartlehner; Leila Kahwati; Rainer Hilscher; Ian Thomas; Shannon Kugley; Karen Crotty; Meera Viswanathan; Barbara Nussbaumer-Streit; Graham Booth; Nathaniel Erskine; Amanda Konet; Robert Chew – Research Synthesis Methods, 2024
Data extraction is a crucial, yet labor-intensive and error-prone part of evidence synthesis. To date, efforts to harness machine learning for enhancing efficiency of the data extraction process have fallen short of achieving sufficient accuracy and usability. With the release of large language models (LLMs), new possibilities have emerged to…
Descriptors: Data Collection, Evidence, Synthesis, Language Processing
Timo Gnambs; Ulrich Schroeders – Research Synthesis Methods, 2024
Meta-analyses of treatment effects in randomized control trials are often faced with the problem of missing information required to calculate effect sizes and their sampling variances. Particularly, correlations between pre- and posttest scores are frequently not available. As an ad-hoc solution, researchers impute a constant value for the missing…
Descriptors: Accuracy, Meta Analysis, Randomized Controlled Trials, Effect Size
Armijo-Olivo, Susan; Craig, Rodger; Campbell, Sandy – Research Synthesis Methods, 2020
Background: Evidence from new health technologies is growing, along with demands for evidence to inform policy decisions, creating challenges in completing health technology assessments (HTAs)/systematic reviews (SRs) in a timely manner. Software can decrease the time and burden by automating the process, but evidence validating such software is…
Descriptors: Comparative Analysis, Computer Software, Decision Making, Randomized Controlled Trials
Saluja, Ronak; Cheng, Sierra; delos Santos, Keemo Althea; Chan, Kelvin K. W. – Research Synthesis Methods, 2019
Objective: Various statistical methods have been developed to estimate hazard ratios (HRs) from published Kaplan-Meier (KM) curves for the purpose of performing meta-analyses. The objective of this study was to determine the reliability, accuracy, and precision of four commonly used methods by Guyot, Williamson, Parmar, and Hoyle and Henley.…
Descriptors: Meta Analysis, Reliability, Accuracy, Randomized Controlled Trials
Marshall, Iain J.; Noel-Storr, Anna; Kuiper, Joël; Thomas, James; Wallace, Byron C. – Research Synthesis Methods, 2018
Machine learning (ML) algorithms have proven highly accurate for identifying Randomized Controlled Trials (RCTs) but are not used much in practice, in part because the best way to make use of the technology in a typical workflow is unclear. In this work, we evaluate ML models for RCT classification (support vector machines, convolutional neural…
Descriptors: Randomized Controlled Trials, Accuracy, Computer Software, Classification