Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 9 |
Descriptor
Comparative Analysis | 9 |
Intervals | 9 |
Meta Analysis | 8 |
Effect Size | 5 |
Simulation | 5 |
Medical Research | 4 |
Outcomes of Treatment | 3 |
Correlation | 2 |
Measurement | 2 |
Models | 2 |
Prediction | 2 |
More ▼ |
Source
Research Synthesis Methods | 9 |
Author
Higgins, Julian P. T. | 3 |
Langan, Dean | 2 |
Abrams, Keith R. | 1 |
Bender, Ralf | 1 |
Chu, Haitao | 1 |
Furukawa, Toshi A. | 1 |
Gurung, Tara | 1 |
Hamura, Yasuyuki | 1 |
Jackson, Dan | 1 |
Jacobs, Perke | 1 |
Knapp, Guido | 1 |
More ▼ |
Publication Type
Journal Articles | 9 |
Reports - Research | 5 |
Information Analyses | 3 |
Reports - Descriptive | 2 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Siegel, Lianne; Chu, Haitao – Research Synthesis Methods, 2023
Reference intervals, or reference ranges, aid medical decision-making by containing a pre-specified proportion (e.g., 95%) of the measurements in a representative healthy population. We recently proposed three approaches for estimating a reference interval from a meta-analysis based on a random effects model: a frequentist approach, a Bayesian…
Descriptors: Bayesian Statistics, Meta Analysis, Intervals, Decision Making
Noma, Hisashi; Hamura, Yasuyuki; Sugasawa, Shonosuke; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has played an important role in evidence-based medicine for assessing the comparative effectiveness of multiple available treatments. The prediction interval has been one of the standard outputs in recent network meta-analysis as an effective measure that enables simultaneous assessment of uncertainties in treatment effects…
Descriptors: Intervals, Meta Analysis, Evidence Based Practice, Comparative Analysis
Veroniki, Areti Angeliki; Jackson, Dan; Bender, Ralf; Kuss, Oliver; Langan, Dean; Higgins, Julian P. T.; Knapp, Guido; Salanti, Georgia – Research Synthesis Methods, 2019
Meta-analyses are an important tool within systematic reviews to estimate the overall effect size and its confidence interval for an outcome of interest. If heterogeneity between the results of the relevant studies is anticipated, then a random-effects model is often preferred for analysis. In this model, a prediction interval for the true effect…
Descriptors: Meta Analysis, Effect Size, Simulation, Comparative Analysis
Jacobs, Perke; Viechtbauer, Wolfgang – Research Synthesis Methods, 2017
Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying…
Descriptors: Sampling, Correlation, Meta Analysis, Measurement
Langan, Dean; Higgins, Julian P. T.; Simmonds, Mark – Research Synthesis Methods, 2017
Random-effects meta-analysis methods include an estimate of between-study heterogeneity variance. We present a systematic review of simulation studies comparing the performance of different estimation methods for this parameter. We summarise the performance of methods in relation to estimation of heterogeneity and of the overall effect estimate,…
Descriptors: Meta Analysis, Simulation, Comparative Analysis, Intervals
López-López, José Antonio; Van den Noortgate, Wim; Tanner-Smith, Emily E.; Wilson, Sandra Jo; Lipsey, Mark W. – Research Synthesis Methods, 2017
Dependent effect sizes are ubiquitous in meta-analysis. Using Monte Carlo simulation, we compared the performance of 2 methods for meta-regression with dependent effect sizes--robust variance estimation (RVE) and 3-level modeling--with the standard meta-analytic method for independent effect sizes. We further compared bias-reduced linearization…
Descriptors: Effect Size, Regression (Statistics), Meta Analysis, Comparative Analysis
Mawdsley, David; Higgins, Julian P. T.; Sutton, Alex J.; Abrams, Keith R. – Research Synthesis Methods, 2017
In meta-analysis, the random-effects model is often used to account for heterogeneity. The model assumes that heterogeneity has an additive effect on the variance of effect sizes. An alternative model, which assumes multiplicative heterogeneity, has been little used in the medical statistics community, but is widely used by particle physicists. In…
Descriptors: Databases, Meta Analysis, Goodness of Fit, Effect Size
Yu, Winifred W.; Schmid, Christopher H.; Lichtenstein, Alice H.; Lau, Joseph; Trikalinos, Thomas A. – Research Synthesis Methods, 2013
The objective of this study is to empirically compare alternative meta-analytic methods for combining dose-response data from epidemiological studies. We identified meta-analyses of epidemiological studies that analyzed the association between a single nutrient and a dichotomous outcome. For each topic, we performed meta-analyses of odds ratios…
Descriptors: Comparative Analysis, Meta Analysis, Research Methodology, Nutrition
Robertson, Clare; Ramsay, Craig; Gurung, Tara; Mowatt, Graham; Pickard, Robert; Sharma, Pawana – Research Synthesis Methods, 2014
We describe our experience of using a modified version of the Cochrane risk of bias (RoB) tool for randomised and non-randomised comparative studies. Objectives: (1) To assess time to complete RoB assessment; (2) To assess inter-rater agreement; and (3) To explore the association between RoB and treatment effect size. Methods: Cochrane risk of…
Descriptors: Risk, Randomized Controlled Trials, Research Design, Comparative Analysis