Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 7 |
Descriptor
Source
Research Synthesis Methods | 7 |
Author
Campbell, Harlan | 1 |
Chen, Yong | 1 |
Chu, Haitao | 1 |
Debray, Thomas P. A. | 1 |
Glass, Änne | 1 |
Gustafson, Paul | 1 |
Hodges, James S. | 1 |
Huang, Hening | 1 |
Ickstadt, Katja | 1 |
Jackson, Dan | 1 |
Jaenisch, Thomas | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 4 |
Information Analyses | 3 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Rott, Kollin W.; Lin, Lifeng; Hodges, James S.; Siegel, Lianne; Shi, Amy; Chen, Yong; Chu, Haitao – Research Synthesis Methods, 2021
Meta-analysis is commonly used to compare two treatments. Network meta-analysis (NMA) is a powerful extension for comparing and contrasting multiple treatments simultaneously in a systematic review of multiple clinical trials. Although the practical utility of meta-analysis is apparent, it is not always straightforward to implement, especially for…
Descriptors: Bayesian Statistics, Meta Analysis, Computation, Networks
Qi, Hongchao; Rizopoulos, Dimitris; Rosmalen, Joost – Research Synthesis Methods, 2023
The meta-analytic-predictive (MAP) approach is a Bayesian method to incorporate historical controls in new trials that aims to increase the statistical power and reduce the required sample size. Here we investigate how to calculate the sample size of the new trial when historical data is available, and the MAP approach is used in the analysis. In…
Descriptors: Sample Size, Computation, Meta Analysis, Bayesian Statistics
Kwon, Deukwoo; Reddy, Roopesh Reddy Sadashiva; Reis, Isildinha M. – Research Synthesis Methods, 2021
In meta-analysis based on continuous outcome, estimated means and corresponding standard deviations from the selected studies are key inputs to obtain a pooled estimate of the mean and its confidence interval. We often encounter the situation that these quantities are not directly reported in the literatures. Instead, other summary statistics are…
Descriptors: Meta Analysis, Computation, Bayesian Statistics, Computer Oriented Programs
Campbell, Harlan; de Jong, Valentijn M. T.; Maxwell, Lauren; Jaenisch, Thomas; Debray, Thomas P. A.; Gustafson, Paul – Research Synthesis Methods, 2021
Ideally, a meta-analysis will summarize data from several unbiased studies. Here we look into the less than ideal situation in which contributing studies may be compromised by non-differential measurement error in the exposure variable. Specifically, we consider a meta-analysis for the association between a continuous outcome variable and one or…
Descriptors: Error of Measurement, Meta Analysis, Bayesian Statistics, Statistical Analysis
Huang, Hening – Research Synthesis Methods, 2023
Many statistical methods (estimators) are available for estimating the consensus value (or average effect) and heterogeneity variance in interlaboratory studies or meta-analyses. These estimators are all valid because they are developed from or supported by certain statistical principles. However, no estimator can be perfect and must have error or…
Descriptors: Statistical Analysis, Computation, Measurement Techniques, Meta Analysis
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Jackson, Dan – Research Synthesis Methods, 2013
Statistical inference is problematic in the common situation in meta-analysis where the random effects model is fitted to just a handful of studies. In particular, the asymptotic theory of maximum likelihood provides a poor approximation, and Bayesian methods are sensitive to the prior specification. Hence, less efficient, but easily computed and…
Descriptors: Computation, Statistical Analysis, Meta Analysis, Statistical Inference