Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 8 |
Descriptor
Computation | 8 |
Intervals | 8 |
Meta Analysis | 8 |
Statistical Analysis | 6 |
Statistical Distributions | 3 |
Regression (Statistics) | 2 |
Sample Size | 2 |
Sampling | 2 |
Simulation | 2 |
Bayesian Statistics | 1 |
Computer Software | 1 |
More ▼ |
Source
Research Synthesis Methods | 8 |
Author
Cao, Wenhao | 2 |
Chu, Haitao | 2 |
Siegel, Lianne | 2 |
Baker, Rose | 1 |
Bazerbachi, Fateh | 1 |
Bowden, Jack | 1 |
Cairns, Maxwell | 1 |
Chen, Yong | 1 |
Furukawa, Toshi A. | 1 |
Glass, Änne | 1 |
Gosho, Masahiko | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Information Analyses | 3 |
Reports - Descriptive | 3 |
Reports - Research | 2 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Rrita Zejnullahi; Larry V. Hedges – Research Synthesis Methods, 2024
Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods…
Descriptors: Robustness (Statistics), Meta Analysis, Sample Size, Computation
Cairns, Maxwell; Prendergast, Luke A. – Research Synthesis Methods, 2022
As a measure of heterogeneity in meta-analysis, the coefficient of variation (CV) has been recently considered, providing researchers with a complement to the very popular I[superscript 2] measure. While I[superscript 2] measures the proportion of total variance that is due to variance of the random effects, the CV is the ratio of the standard…
Descriptors: Meta Analysis, Statistical Analysis, Intervals, Computation
Jiang, Ziren; Cao, Wenhao; Chu, Haitao; Bazerbachi, Fateh; Siegel, Lianne – Research Synthesis Methods, 2023
A reference interval, or an interval in which a prespecified proportion of measurements from a healthy population are expected to fall, is used to determine whether a person's measurement is typical of a healthy individual. For a specific biomarker, multiple published studies may provide data collected from healthy participants. A reference…
Descriptors: Intervals, Computation, Meta Analysis, Measurement
Cao, Wenhao; Siegel, Lianne; Zhou, Jincheng; Zhu, Motao; Tong, Tiejun; Chen, Yong; Chu, Haitao – Research Synthesis Methods, 2021
A reference interval provides a basis for physicians to determine whether a measurement is typical of a healthy individual. It can be interpreted as a prediction interval for a new individual from the overall population. However, a reference interval based on a single study may not be representative of the broader population. Meta-analysis can…
Descriptors: Meta Analysis, Statistical Analysis, Intervals, Computation
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Jackson, Dan; Bowden, Jack; Baker, Rose – Research Synthesis Methods, 2015
Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Computation, Evaluation Methods
Schild, Anne H. E.; Voracek, Martin – Research Synthesis Methods, 2015
Research has shown that forest plots are a gold standard in the visualization of meta-analytic results. However, research on the general interpretation of forest plots and the role of researchers' meta-analysis experience and field of study is still unavailable. Additionally, the traditional display of effect sizes, confidence intervals, and…
Descriptors: Graphs, Visualization, Meta Analysis, Data Interpretation