NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gerald Gartlehner; Leila Kahwati; Rainer Hilscher; Ian Thomas; Shannon Kugley; Karen Crotty; Meera Viswanathan; Barbara Nussbaumer-Streit; Graham Booth; Nathaniel Erskine; Amanda Konet; Robert Chew – Research Synthesis Methods, 2024
Data extraction is a crucial, yet labor-intensive and error-prone part of evidence synthesis. To date, efforts to harness machine learning for enhancing efficiency of the data extraction process have fallen short of achieving sufficient accuracy and usability. With the release of large language models (LLMs), new possibilities have emerged to…
Descriptors: Data Collection, Evidence, Synthesis, Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Caspar J. Van Lissa; Eli-Boaz Clapper; Rebecca Kuiper – Research Synthesis Methods, 2024
The product Bayes factor (PBF) synthesizes evidence for an informative hypothesis across heterogeneous replication studies. It can be used when fixed- or random effects meta-analysis fall short. For example, when effect sizes are incomparable and cannot be pooled, or when studies diverge significantly in the populations, study designs, and…
Descriptors: Hypothesis Testing, Evaluation Methods, Replication (Evaluation), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Turner, Simon Lee; Korevaar, Elizabeth; Cumpston, Miranda S.; Kanukula, Raju; Forbes, Andrew B.; McKenzie, Joanne E. – Research Synthesis Methods, 2023
Interrupted time series (ITS) studies are frequently used to examine the impact of population-level interventions or exposures. Systematic reviews with meta-analyses including ITS designs may inform public health and policy decision-making. Re-analysis of ITS may be required for inclusion in meta-analysis. While publications of ITS rarely provide…
Descriptors: Quasiexperimental Design, Graphs, Accuracy, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
E., Jian-Yu; Saldanha, Ian J.; Canner, Joseph; Schmid, Christopher H.; Le, Jimmy T.; Li, Tianjing – Research Synthesis Methods, 2020
Background: During systematic reviews, "data abstraction" refers to the process of collecting data from reports of studies. The data abstractors' level of experience may affect the accuracy of data abstracted. Using data from a randomized crossover trial in which different data abstraction approaches were compared, we examined the…
Descriptors: Literature Reviews, Data Collection, Experience, Accuracy