Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 9 |
Descriptor
Effect Size | 9 |
Error of Measurement | 9 |
Meta Analysis | 9 |
Bias | 3 |
Intervals | 3 |
Monte Carlo Methods | 3 |
Publications | 3 |
Regression (Statistics) | 3 |
Simulation | 3 |
Statistical Bias | 3 |
Comparative Analysis | 2 |
More ▼ |
Source
Research Synthesis Methods | 9 |
Author
Publication Type
Journal Articles | 9 |
Reports - Research | 6 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Joshi, Megha; Pustejovsky, James E.; Beretvas, S. Natasha – Research Synthesis Methods, 2022
The most common and well-known meta-regression models work under the assumption that there is only one effect size estimate per study and that the estimates are independent. However, meta-analytic reviews of social science research often include multiple effect size estimates per primary study, leading to dependence in the estimates. Some…
Descriptors: Meta Analysis, Regression (Statistics), Models, Effect Size
Lin, Lifeng – Research Synthesis Methods, 2019
Assessing publication bias is a critical procedure in meta-analyses for rating the synthesized overall evidence. Because statistical tests for publication bias are usually not powerful and only give "P" values that inform either the presence or absence of the bias, examining the asymmetry of funnel plots has been popular to investigate…
Descriptors: Meta Analysis, Sample Size, Graphs, Bias
Pustejovsky, James E.; Rodgers, Melissa A. – Research Synthesis Methods, 2019
Publication bias and other forms of outcome reporting bias are critical threats to the validity of findings from research syntheses. A variety of methods have been proposed for detecting selective outcome reporting in a collection of effect size estimates, including several methods based on assessment of asymmetry of funnel plots, such as the…
Descriptors: Effect Size, Regression (Statistics), Statistical Analysis, Error of Measurement
Seide, Svenja E.; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2020
The performance of statistical methods is often evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, simulations are not currently available for many practically relevant settings. We perform a simulation study for sparse networks of trials under between-trial heterogeneity and including multi-arm…
Descriptors: Bayesian Statistics, Meta Analysis, Data Analysis, Networks
Hong, Sanghyun; Reed, W. Robert – Research Synthesis Methods, 2021
The purpose of this study is to show how Monte Carlo analysis of meta-analytic estimators can be used to select estimators for specific research situations. Our analysis conducts 1620 individual experiments, where each experiment is defined by a unique combination of sample size, effect size, effect size heterogeneity, publication selection…
Descriptors: Monte Carlo Methods, Meta Analysis, Research Methodology, Experiments
Rubio-Aparicio, María; López-López, José Antonio; Sánchez-Meca, Julio; Marín-Martínez, Fulgencio; Viechtbauer, Wolfgang; Van den Noortgate, Wim – Research Synthesis Methods, 2018
The random-effects model, applied in most meta-analyses nowadays, typically assumes normality of the distribution of the effect parameters. The purpose of this study was to examine the performance of various random-effects methods (standard method, Hartung's method, profile likelihood method, and bootstrapping) for computing an average effect size…
Descriptors: Effect Size, Meta Analysis, Intervals, Monte Carlo Methods
López-López, José Antonio; Van den Noortgate, Wim; Tanner-Smith, Emily E.; Wilson, Sandra Jo; Lipsey, Mark W. – Research Synthesis Methods, 2017
Dependent effect sizes are ubiquitous in meta-analysis. Using Monte Carlo simulation, we compared the performance of 2 methods for meta-regression with dependent effect sizes--robust variance estimation (RVE) and 3-level modeling--with the standard meta-analytic method for independent effect sizes. We further compared bias-reduced linearization…
Descriptors: Effect Size, Regression (Statistics), Meta Analysis, Comparative Analysis
Debray, Thomas P. A.; Moons, Karel G. M.; Riley, Richard D. – Research Synthesis Methods, 2018
Small-study effects are a common threat in systematic reviews and may indicate publication bias. Their existence is often verified by visual inspection of the funnel plot. Formal tests to assess the presence of funnel plot asymmetry typically estimate the association between the reported effect size and their standard error, the total sample size,…
Descriptors: Meta Analysis, Comparative Analysis, Publications, Bias
Dogo, Samson Henry; Clark, Allan; Kulinskaya, Elena – Research Synthesis Methods, 2017
Temporal changes in magnitude of effect sizes reported in many areas of research are a threat to the credibility of the results and conclusions of meta-analysis. Numerous sequential methods for meta-analysis have been proposed to detect changes and monitor trends in effect sizes so that meta-analysis can be updated when necessary and interpreted…
Descriptors: Effect Size, Meta Analysis, Visualization, Error of Measurement