Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 5 |
Descriptor
Error of Measurement | 5 |
Intervals | 5 |
Meta Analysis | 5 |
Statistical Bias | 4 |
Effect Size | 3 |
Monte Carlo Methods | 2 |
Regression (Statistics) | 2 |
Accuracy | 1 |
Bayesian Statistics | 1 |
Comparative Analysis | 1 |
Computation | 1 |
More ▼ |
Source
Research Synthesis Methods | 5 |
Author
Publication Type
Journal Articles | 5 |
Reports - Research | 2 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Kulinskaya, Elena; Hoaglin, David C. – Research Synthesis Methods, 2023
For estimation of heterogeneity variance T[superscript 2] in meta-analysis of log-odds-ratio, we derive new mean- and median-unbiased point estimators and new interval estimators based on a generalized Q statistic, Q[subscript F], in which the weights depend on only the studies' effective sample sizes. We compare them with familiar estimators…
Descriptors: Q Methodology, Statistical Analysis, Meta Analysis, Intervals
Seide, Svenja E.; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2020
The performance of statistical methods is often evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, simulations are not currently available for many practically relevant settings. We perform a simulation study for sparse networks of trials under between-trial heterogeneity and including multi-arm…
Descriptors: Bayesian Statistics, Meta Analysis, Data Analysis, Networks
Rubio-Aparicio, María; López-López, José Antonio; Sánchez-Meca, Julio; Marín-Martínez, Fulgencio; Viechtbauer, Wolfgang; Van den Noortgate, Wim – Research Synthesis Methods, 2018
The random-effects model, applied in most meta-analyses nowadays, typically assumes normality of the distribution of the effect parameters. The purpose of this study was to examine the performance of various random-effects methods (standard method, Hartung's method, profile likelihood method, and bootstrapping) for computing an average effect size…
Descriptors: Effect Size, Meta Analysis, Intervals, Monte Carlo Methods
López-López, José Antonio; Van den Noortgate, Wim; Tanner-Smith, Emily E.; Wilson, Sandra Jo; Lipsey, Mark W. – Research Synthesis Methods, 2017
Dependent effect sizes are ubiquitous in meta-analysis. Using Monte Carlo simulation, we compared the performance of 2 methods for meta-regression with dependent effect sizes--robust variance estimation (RVE) and 3-level modeling--with the standard meta-analytic method for independent effect sizes. We further compared bias-reduced linearization…
Descriptors: Effect Size, Regression (Statistics), Meta Analysis, Comparative Analysis