NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Noma, Hisashi; Hamura, Yasuyuki; Gosho, Masahiko; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has been an essential methodology of systematic reviews for comparative effectiveness research. The restricted maximum likelihood (REML) method is one of the current standard inference methods for multivariate, contrast-based meta-analysis models, but recent studies have revealed the resultant confidence intervals of average…
Descriptors: Network Analysis, Meta Analysis, Regression (Statistics), Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Kulinskaya, Elena; Hoaglin, David C. – Research Synthesis Methods, 2023
For estimation of heterogeneity variance T[superscript 2] in meta-analysis of log-odds-ratio, we derive new mean- and median-unbiased point estimators and new interval estimators based on a generalized Q statistic, Q[subscript F], in which the weights depend on only the studies' effective sample sizes. We compare them with familiar estimators…
Descriptors: Q Methodology, Statistical Analysis, Meta Analysis, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Seide, Svenja E.; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2020
The performance of statistical methods is often evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, simulations are not currently available for many practically relevant settings. We perform a simulation study for sparse networks of trials under between-trial heterogeneity and including multi-arm…
Descriptors: Bayesian Statistics, Meta Analysis, Data Analysis, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Rubio-Aparicio, María; López-López, José Antonio; Sánchez-Meca, Julio; Marín-Martínez, Fulgencio; Viechtbauer, Wolfgang; Van den Noortgate, Wim – Research Synthesis Methods, 2018
The random-effects model, applied in most meta-analyses nowadays, typically assumes normality of the distribution of the effect parameters. The purpose of this study was to examine the performance of various random-effects methods (standard method, Hartung's method, profile likelihood method, and bootstrapping) for computing an average effect size…
Descriptors: Effect Size, Meta Analysis, Intervals, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
López-López, José Antonio; Van den Noortgate, Wim; Tanner-Smith, Emily E.; Wilson, Sandra Jo; Lipsey, Mark W. – Research Synthesis Methods, 2017
Dependent effect sizes are ubiquitous in meta-analysis. Using Monte Carlo simulation, we compared the performance of 2 methods for meta-regression with dependent effect sizes--robust variance estimation (RVE) and 3-level modeling--with the standard meta-analytic method for independent effect sizes. We further compared bias-reduced linearization…
Descriptors: Effect Size, Regression (Statistics), Meta Analysis, Comparative Analysis