NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
A. E. Ades; Nicky J. Welton; Sofia Dias; David M. Phillippo; Deborah M. Caldwell – Research Synthesis Methods, 2024
Network meta-analysis (NMA) is an extension of pairwise meta-analysis (PMA) which combines evidence from trials on multiple treatments in connected networks. NMA delivers internally consistent estimates of relative treatment efficacy, needed for rational decision making. Over its first 20 years NMA's use has grown exponentially, with applications…
Descriptors: Network Analysis, Meta Analysis, Medicine, Clinical Experience
Peer reviewed Peer reviewed
Direct linkDirect link
Edoardo G. Ostinelli; Orestis Efthimiou; Yan Luo; Clara Miguel; Eirini Karyotaki; Pim Cuijpers; Toshi A. Furukawa; Georgia Salanti; Andrea Cipriani – Research Synthesis Methods, 2024
When studies use different scales to measure continuous outcomes, standardised mean differences (SMD) are required to meta-analyse the data. However, outcomes are often reported as endpoint or change from baseline scores. Combining corresponding SMDs can be problematic and available guidance advises against this practice. We aimed to examine the…
Descriptors: Network Analysis, Meta Analysis, Depression (Psychology), Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Cope, Shannon; Chan, Keith; Jansen, Jeroen P. – Research Synthesis Methods, 2020
Background: Network meta-analysis (NMA) of survival data with a multidimensional treatment effect has been introduced as an alternative to NMA based on the proportional hazards assumption. However, these flexible models have some limitations, such as the use of an approximate likelihood based on discrete hazards, rather than a likelihood for…
Descriptors: Multivariate Analysis, Meta Analysis, Network Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Su, Yu-Xuan; Tu, Yu-Kang – Research Synthesis Methods, 2018
Network meta-analysis compares multiple treatments in terms of their efficacy and harm by including evidence from randomized controlled trials. Most clinical trials use parallel design, where patients are randomly allocated to different treatments and receive only 1 treatment. However, some trials use within person designs such as split-body,…
Descriptors: Network Analysis, Meta Analysis, Randomized Controlled Trials, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Pedder, Hugo; Boucher, Martin; Dias, Sofia; Bennetts, Margherita; Welton, Nicky J. – Research Synthesis Methods, 2020
Time-course model-based network meta-analysis (MBNMA) has been proposed as a framework to combine treatment comparisons from a network of randomized controlled trials reporting outcomes at multiple time-points. This can explain heterogeneity/inconsistency that arises by pooling studies with different follow-up times and allow inclusion of studies…
Descriptors: Simulation, Randomized Controlled Trials, Meta Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Uhlmann, Lorenz; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2017
Network meta-analysis is becoming a common approach to combine direct and indirect comparisons of several treatment arms. In recent research, there have been various developments and extensions of the standard methodology. Simultaneously, cluster randomized trials are experiencing an increased popularity, especially in the field of health services…
Descriptors: Bayesian Statistics, Network Analysis, Meta Analysis, Randomized Controlled Trials
Peer reviewed Peer reviewed
Direct linkDirect link
Freeman, Suzanne C.; Carpenter, James R. – Research Synthesis Methods, 2017
Network meta-analysis (NMA) combines direct and indirect evidence from trials to calculate and rank treatment estimates. While modelling approaches for continuous and binary outcomes are relatively well developed, less work has been done with time-to-event outcomes. Such outcomes are usually analysed using Cox proportional hazard (PH) models.…
Descriptors: Bayesian Statistics, Network Analysis, Meta Analysis, Data