NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rrita Zejnullahi; Larry V. Hedges – Research Synthesis Methods, 2024
Conventional random-effects models in meta-analysis rely on large sample approximations instead of exact small sample results. While random-effects methods produce efficient estimates and confidence intervals for the summary effect have correct coverage when the number of studies is sufficiently large, we demonstrate that conventional methods…
Descriptors: Robustness (Statistics), Meta Analysis, Sample Size, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Siegel, Lianne; Chu, Haitao – Research Synthesis Methods, 2023
Reference intervals, or reference ranges, aid medical decision-making by containing a pre-specified proportion (e.g., 95%) of the measurements in a representative healthy population. We recently proposed three approaches for estimating a reference interval from a meta-analysis based on a random effects model: a frequentist approach, a Bayesian…
Descriptors: Bayesian Statistics, Meta Analysis, Intervals, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Noma, Hisashi; Hamura, Yasuyuki; Sugasawa, Shonosuke; Furukawa, Toshi A. – Research Synthesis Methods, 2023
Network meta-analysis has played an important role in evidence-based medicine for assessing the comparative effectiveness of multiple available treatments. The prediction interval has been one of the standard outputs in recent network meta-analysis as an effective measure that enables simultaneous assessment of uncertainties in treatment effects…
Descriptors: Intervals, Meta Analysis, Evidence Based Practice, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Veroniki, Areti Angeliki; Jackson, Dan; Bender, Ralf; Kuss, Oliver; Langan, Dean; Higgins, Julian P. T.; Knapp, Guido; Salanti, Georgia – Research Synthesis Methods, 2019
Meta-analyses are an important tool within systematic reviews to estimate the overall effect size and its confidence interval for an outcome of interest. If heterogeneity between the results of the relevant studies is anticipated, then a random-effects model is often preferred for analysis. In this model, a prediction interval for the true effect…
Descriptors: Meta Analysis, Effect Size, Simulation, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Bakbergenuly, Ilyas; Hoaglin, David C.; Kulinskaya, Elena – Research Synthesis Methods, 2020
In random-effects meta-analysis the between-study variance ([tau][superscript 2]) has a key role in assessing heterogeneity of study-level estimates and combining them to estimate an overall effect. For odds ratios the most common methods suffer from bias in estimating [tau][superscript 2] and the overall effect and produce confidence intervals…
Descriptors: Meta Analysis, Statistical Bias, Intervals, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Seide, Svenja E.; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2020
The performance of statistical methods is often evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, simulations are not currently available for many practically relevant settings. We perform a simulation study for sparse networks of trials under between-trial heterogeneity and including multi-arm…
Descriptors: Bayesian Statistics, Meta Analysis, Data Analysis, Networks
Peer reviewed Peer reviewed
Direct linkDirect link
Hoyer, Annika; Kuss, Oliver – Research Synthesis Methods, 2019
Diagnostic test accuracy studies frequently report on sensitivities and specificities for more than one threshold of the diagnostic test under study. Although it is obvious that the information from all thresholds should be used for a meta-analysis, in practice, frequently, only a single pair of sensitivity and specificity is selected. To overcome…
Descriptors: Meta Analysis, Diagnostic Tests, Correlation, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Jacobs, Perke; Viechtbauer, Wolfgang – Research Synthesis Methods, 2017
Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying…
Descriptors: Sampling, Correlation, Meta Analysis, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Günhan, Burak Kürsad; Röver, Christian; Friede, Tim – Research Synthesis Methods, 2020
Meta-analyses of clinical trials targeting rare events face particular challenges when the data lack adequate numbers of events for all treatment arms. Especially when the number of studies is low, standard random-effects meta-analysis methods can lead to serious distortions because of such data sparsity. To overcome this, we suggest the use of…
Descriptors: Meta Analysis, Medical Research, Drug Therapy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Langan, Dean; Higgins, Julian P. T.; Simmonds, Mark – Research Synthesis Methods, 2017
Random-effects meta-analysis methods include an estimate of between-study heterogeneity variance. We present a systematic review of simulation studies comparing the performance of different estimation methods for this parameter. We summarise the performance of methods in relation to estimation of heterogeneity and of the overall effect estimate,…
Descriptors: Meta Analysis, Simulation, Comparative Analysis, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
Friede, Tim; Röver, Christian; Wandel, Simon; Neuenschwander, Beat – Research Synthesis Methods, 2017
Meta-analyses in orphan diseases and small populations generally face particular problems, including small numbers of studies, small study sizes and heterogeneity of results. However, the heterogeneity is difficult to estimate if only very few studies are included. Motivated by a systematic review in immunosuppression following liver…
Descriptors: Meta Analysis, Diseases, Medical Research, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Dan; Bowden, Jack; Baker, Rose – Research Synthesis Methods, 2015
Moment-based estimators of the between-study variance are very popular when performing random effects meta-analyses. This type of estimation has many advantages including computational and conceptual simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed without the assumption that the treatment…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Computation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Tipton, Elizabeth – Research Synthesis Methods, 2013
Dependent effect size estimates are a common problem in meta-analysis. Recently, a robust variance estimation method was introduced that can be used whenever effect sizes in a meta-analysis are not independent. This problem arises, for example, when effect sizes are nested or when multiple measures are collected on the same individuals. In this…
Descriptors: Robustness (Statistics), Meta Analysis, Regression (Statistics), Effect Size