NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hancock, James Brian, II; Lee, May – Science Teacher, 2018
Many teachers are confused about how to implement the phenomena-based teaching recommended by the "Next Generation Science Standards" (NGSS Lead States 2013). This article describes one possible approach--purposely repurposing existing activities. This process involves having teachers: (1) Choose a phenomenon that informs the development…
Descriptors: Concept Teaching, Scientific Concepts, Scientific Principles, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Campbell, Todd; Neilson, Drew – Science Teacher, 2016
In this article Campbell and Neilson discuss several design strategies developed or adopted that were found particularly helpful when sequencing a unit that focused on learning about motion and acceleration. Students were expected to predict, observe, and explain why a ball traveled down one ramp faster than the other. Before engaging students,…
Descriptors: Models, Motion, Kinetics, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Bruxvoort, Crystal; Jadrich, James – Science Teacher, 2016
Science students should undertake engineering design projects and carry out scientific investigations, as recommended by the "Next Generation Science Standards" (NGSS Lead States 2013). However, studies show that students misconstrue the goals of science and engineering and are uncertain about their respective practices (Gilbert and Wade…
Descriptors: STEM Education, Science Instruction, Equipment, Engineering
Peer reviewed Peer reviewed
Direct linkDirect link
Lotter, Christine; Taylor, Laurie – Science Teacher, 2016
In the 2 day lesson presented in this article, students explain how ionic substances interact in solutions by developing and revising their own explanatory models. The lesson engaged students in three-dimensional learning through creating and revising their own models to explain the interaction of ionic substances and polar molecules in a closed…
Descriptors: Molecular Structure, Science Activities, Science Instruction, Scientific Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Passmore, Cynthia; Coleman, Elizabeth; Horton, Jennifer; Parker, Heather – Science Teacher, 2013
At its core, science is about making sense of the world around us. Therefore, science education should engage students in that sense-making process. Helping students make sense of disciplinary core ideas and crosscutting concepts by engaging in scientific practices is the key innovation of the "Next Generation Science Standards"…
Descriptors: Science Instruction, Models, Scientific Concepts, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Campbell, Todd; Neilson, Drew; Oh, Phil Seok – Science Teacher, 2013
Of the eight practices of science identified in "A Framework for K-12 Science Education" (NRC 2012), helping students develop and use models has been identified by many as an anchor (Schwarz and Passmore 2012; Windschitl 2012). In instruction, disciplinary core ideas, crosscutting concepts, and scientific practices can be meaningfully…
Descriptors: Physics, Models, Science Education, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Bogiages, Christopher A.; Lotter, Christine – Science Teacher, 2011
In their research, scientists generate, test, and modify scientific models. These models can be shared with others and demonstrate a scientist's understanding of how the natural world works. Similarly, students can generate and modify models to gain a better understanding of the content, process, and nature of science (Kenyon, Schwarz, and Hug…
Descriptors: Scientific Principles, Biology, Science Education, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Feldman, Allan; Cooke, Michele L.; Ellsworth, Mary S. – Science Teacher, 2010
For scientists, the sandbox serves as an analog for faulting in Earth's crust. Here, the large, slow processes within the crust can be scaled to the size of a table, and time scales are directly observable. This makes it a useful tool for demonstrating the role of inquiry in science. For this reason, the sandbox is also helpful for learning…
Descriptors: Earth Science, Science Activities, Inquiry, Science Instruction
Peer reviewed Peer reviewed
Winthrop, Henry – Science Teacher, 1971
Reviews some research on, and provides a mathematical model for, the decline in bacterial populations in a closed system as a consequence of accumulating toxins and decreasing food. (AL)
Descriptors: Environmental Influences, Microbiology, Models, Population Growth
Peer reviewed Peer reviewed
Barton, Andrea M. – Science Teacher, 2001
Introduces a high school science curriculum that embodies inquiry-based genetics, evolution, and astronomy. Presents two astronomy units of scientific modeling. The first activity involves a black box to explain a hidden mechanism's effect on the outflow of water. The second activity involves the development of celestial motion models to explain…
Descriptors: Astronomy, Inquiry, Models, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Melville, Wayne; Fazio, Xavier – Science Teacher, 2007
Due to his work to determine how cholera was spread in the 18th century, John Snow (1813-1858) has been hailed as the father of modern epidemiology. This article presents an inquiry model based on his life and work, which teachers can use to develop a series of biology lessons involving the history and nature of science. The lessons presented use…
Descriptors: Scientific Principles, Science Programs, Epidemiology, Science Instruction
Peer reviewed Peer reviewed
Schrader, Clifford L. – Science Teacher, 1985
Teaching how scientific models work can result from "black box" techniques applied to various classroom seating arrangements. The teacher can assign students to seats based on observable (last name, height) and nonvisible (telephone number) criteria. Students become involved in guessing the criterion, which leads to discussion of models and…
Descriptors: High Schools, Models, Science Activities, Science Education
Peer reviewed Peer reviewed
Schamp, Homer W., Jr. – Science Teacher, 1990
Discussed is the idea that models should be taught by emphasizing limitations rather than focusing on their generality. Two examples of gas behavior models are included--the kinetic and static models. (KR)
Descriptors: Chemistry, Cognitive Dissonance, Concept Formation, Energy