NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 57 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Montalto, Cassandra; Wong, Sissy S. – Science Teacher, 2022
Modeling is an important tool in science teaching and learning. Constructing a model instead of replicating one is more meaningful and better supports student learning than analyzing premade models (Firooznia 2015; Gouvea and Passmore 2017; Takemura and Kurabayashi 2014). Models include physical replications of a scientific phenomenon or analyzing…
Descriptors: Science Instruction, Teaching Methods, Models, Genetics
Peer reviewed Peer reviewed
Direct linkDirect link
Griffith, Jonathan; Kozick-Kingston, Margaret – Science Teacher, 2022
Model-based inquiry (MBI) is an instructional framework designed around the construction, revision, and testing of models by students to make sense of and explain a phenomenon (Windschitl et al. 2008). Focusing on explaining natural phenomena provides a specific context for students to learn and apply scientific understandings to and can help…
Descriptors: Earth Science, Climate, Models, Science Process Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Rock, Carly A.; Whitworth, Brooke A. – Science Teacher, 2021
At the core of an effective model-based inquiry (MBI) unit is a scientifically rich, complex phenomenon that serves as the reason for engagement and drives student sensemaking and investigations throughout the unit. Engaging in iterative attempts to explain phenomena over the course of an MBI unit allows the opportunity for students to construct…
Descriptors: Science Instruction, Models, Inquiry, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Byung-Yeol; Rodriguez, Laura; Campbell, Todd – Science Teacher, 2019
Cultivating students' scientific knowledge and developing their capability in scientific inquiry depends on a teacher's ability to use existing resources to design rich learning opportunities. Designing such experiences is not easy, and is particularly challenging for new teachers who have little experience making decisions about the best way to…
Descriptors: Science Instruction, Models, Teaching Methods, National Standards
Peer reviewed Peer reviewed
Direct linkDirect link
Rodriguez, Shelly; Allen, Kelli; Harron, Jason; Qadri, Syeda Ayesha – Science Teacher, 2019
Inquiry-based teaching aims to increase student engagement through the development of the hands-on, minds-on skills, such as critical thinking, collaboration, and communication, needed for the 21st century (The Partnership for 21st Century Skills 2015). This approach respects the complexities of the learning process, values the knowledge and…
Descriptors: Learner Engagement, Teaching Methods, Inquiry, Active Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Reed, Megan H.; Jenkins, Tom; Kenyon, Lisa – Science Teacher, 2019
Nitrogen- or phosphorus-based fertilizers, used in agriculture, can run off into nearby waterways during periods of heavy rain or high flow and cause harmful blooms (Paerl et al. 2016), low oxygen (Joyce 2000), and decreased biodiversity (Sebens 1994). Studies of the effects wetlands can have on water and habitat quality (Verhoeven and Meuleman…
Descriptors: Natural Resources, Biodiversity, Grade 9, Ecology
Peer reviewed Peer reviewed
Direct linkDirect link
Hoover, Katherine Street – Science Teacher, 2019
Environmental education for all students is becoming more urgent as societies strive to deal with challenges such as climate change and loss of biodiversity. Teachers have an important role to play in defining the environmental knowledge, beliefs, and actions of the next generation. Understanding the anthropogenic inputs responsible for alteration…
Descriptors: Climate, Environmental Education, Biodiversity, Teacher Role
Peer reviewed Peer reviewed
Direct linkDirect link
Hancock, James Brian, II; Lee, May – Science Teacher, 2018
Many teachers are confused about how to implement the phenomena-based teaching recommended by the "Next Generation Science Standards" (NGSS Lead States 2013). This article describes one possible approach--purposely repurposing existing activities. This process involves having teachers: (1) Choose a phenomenon that informs the development…
Descriptors: Concept Teaching, Scientific Concepts, Scientific Principles, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Campbell, Todd; Neilson, Drew – Science Teacher, 2016
In this article Campbell and Neilson discuss several design strategies developed or adopted that were found particularly helpful when sequencing a unit that focused on learning about motion and acceleration. Students were expected to predict, observe, and explain why a ball traveled down one ramp faster than the other. Before engaging students,…
Descriptors: Models, Motion, Kinetics, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Forster, Michelle; Bestelmeyer, Stephanie; Baez-Rodriguez, Noelia; Berkowitz, Alan; Caplan, Bess; Esposito, Rhea; Grace, Elizabeth; McGee, Steven – Science Teacher, 2018
Thousands of students around the country have participated in activities using the Data Jam model, creating poetry, songs, videos, or sculpture to improve their data literacy, gain knowledge of local science research, and creatively express their findings. This article introduces the Data Jam model and describes how teachers can use it in…
Descriptors: Information Literacy, Scientific Literacy, Science Activities, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Barth-Cohen, Lauren; Medina, Edwing – Science Teacher, 2017
Important science phenomena--such as atomic structure, evolution, and climate change--are often hard to observe directly. That's why an important scientific practice is to use scientific models to represent one's current understanding of a system. Using models has been included as an essential science and engineering practice in the "Next…
Descriptors: Models, Science Process Skills, Science Education, Oceanography
Peer reviewed Peer reviewed
Direct linkDirect link
Lotter, Christine; Taylor, Laurie – Science Teacher, 2016
In the 2 day lesson presented in this article, students explain how ionic substances interact in solutions by developing and revising their own explanatory models. The lesson engaged students in three-dimensional learning through creating and revising their own models to explain the interaction of ionic substances and polar molecules in a closed…
Descriptors: Molecular Structure, Science Activities, Science Instruction, Scientific Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Pentecost, Thomas; Weber, Sarah; Herrington, Deborah – Science Teacher, 2016
Research suggests that connecting the visible (macroscopic) world of chemical phenomena to the invisible (particulate) world of atoms and molecules enhances student understanding in chemistry. This approach aligns with the science standards and is fundamental to the redesigned AP Chemistry curriculum. However, chemistry is usually taught at the…
Descriptors: Chemistry, Molecular Structure, Visual Aids, Critical Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Kraus, Rudolf V. – Science Teacher, 2014
This article describes a two-day optics laboratory activity that investigates the scientific phenomenon of reflection, which students are generally familiar with but usually have not studied in depth. This investigation can be used on its own or as part of a larger unit on optics. This lesson encourages students to think critically and…
Descriptors: Science Instruction, Science Laboratories, Optics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Black, David V. – Science Teacher, 2014
The stars closest to Earth are not particularly remarkable or exciting. They are average stars typical of the spiral arms of our Milky Way galaxy. In fact, until recently, most astronomy and Earth science textbooks ignored all but the largest of them to focus on distant, more exotic objects like red supergiants or black holes. The recent discovery…
Descriptors: Astronomy, Space Sciences, Space Exploration, Learning Activities
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4