NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 48 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wilcox, Jesse; Reiter, Reade; Rose, Abby; Alberts, Alex; Murano, Katie – Science and Children, 2022
Although the "Next Generation Science Standards" (NGSS) have three dimensions, the crosscutting concepts are often the forgotten dimension. One reason teachers may not emphasize the crosscutting concepts might be because they are broad, domain-general constructs that can be difficult to conceptualize in a meaningful way. Yet, when taught…
Descriptors: Science Instruction, Scientific Principles, Teaching Methods, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Katchmark, Laura; McCabe, Elisabeth; Matthews, Kristen; Koomen, Michele – Science and Children, 2020
What better way to engage fifth-grade students in science and engineering practices than to use paper airplanes to encourage them to question, explore, create, and test designs! This multi-day unit draws from a fourth-grade curriculum (Pearson 2012) aligned with the "Next Generation Science Standards" (NGSS Lead States 2013) used in…
Descriptors: Science Instruction, Grade 5, Elementary School Science, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Okhee – Science and Children, 2020
A "Framework for K-12 Science Education and the Next Generation Science Standards" ("NGSS") are intended for all students, hence "all standards, all students" (NGSS Lead States 2013). To make this vision a reality, the "NGSS" highlight three key instructional shifts: (1) explain phenomena or design solutions…
Descriptors: Science Instruction, Grade 5, Elementary School Science, Urban Schools
Peer reviewed Peer reviewed
Direct linkDirect link
Robertson, Bill – Science and Children, 2015
This column contains exercises to challenge content knowledge. This month's issue discusses static charge buildup.
Descriptors: Science Instruction, Scientific Principles, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Robertson, Bill – Science and Children, 2016
Bill Robertson is the author of the NSTA Press book series, "Stop Faking It! Finally Understanding Science So You Can Teach It." In this month's issue, Robertson describes and explains the Heisenberg Uncertainty Principle. The Heisenberg Uncertainty Principle was discussed on "The Big Bang Theory," the lead character in…
Descriptors: Science Instruction, Teaching Methods, Scientific Principles, Elementary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Ashbrook, Peggy – Science and Children, 2017
Engaging children's interest, inspiring active exploration of materials, and fostering cooperation between children and adults is the best way to promote the construction of knowledge. Some popular early childhood activities can be expanded to provide experiences and time for children to build on their prior knowledge. This column discusses…
Descriptors: Science Instruction, Science Activities, Primary Education, Early Childhood Education
Peer reviewed Peer reviewed
Direct linkDirect link
Menon, Deepika; Lankford, Deanna – Science and Children, 2016
From the earliest days of their lives, children are exposed to all kinds of sound, from soft, comforting voices to the frightening rumble of thunder. Consequently, children develop their own naïve explanations largely based upon their experiences with phenomena encountered every day. When new information does not support existing conceptions,…
Descriptors: Science Instruction, Elementary School Science, Grade 4, Acoustics
Peer reviewed Peer reviewed
Direct linkDirect link
Kruse, Jerrid; Wilcox, Jesse – Science and Children, 2017
This column presents ideas and techniques to enhance your science teaching. In this issue the authors discuss a design project they have used with upper elementary students (grades 4-6). They note ways to engage students in thinking philosophically about technology to meet engineering design outcomes in the "Next Generation Science…
Descriptors: Science Instruction, Technological Literacy, Elementary School Science, Student Projects
Peer reviewed Peer reviewed
Direct linkDirect link
Arias, Anna Maria; Davis, Elizabeth A. – Science and Children, 2016
Making and recording scientific observations is a fundamental activity of the scientific community. Scientists use their senses and tools (e.g., magnifying glasses, rulers, colored pencils) to make records of the phenomena (e.g., light energy, ecosystems) they are investigating. These observations often serve as evidence in the scientific…
Descriptors: Scientists, Observation, Science Instruction, Elementary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Vick, Matthew – Science and Children, 2017
Learning to teach elementary science well is not only a goal for preservice teachers. This article describes a partnership that has led to an on-site science methods course in an elementary school library that blends pedagogical instruction with practical classroom time to the benefit of inservice and preservice teachers. In the course, both sets…
Descriptors: Science Instruction, Integrated Curriculum, Preservice Teachers, Faculty Development
Peer reviewed Peer reviewed
Direct linkDirect link
Adams, Krista; Feagin, Shannon – Science and Children, 2017
This article presents a lesson that was designed to explore the scientific descriptions of matter through both the intensive and extensive properties that students successfully added to their vocabulary. Students' examples demonstrated that there were places where their reasoning about matter faltered as related to how the material is the same…
Descriptors: Science Instruction, Scientific Concepts, Scientific Principles, Elementary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Robertson, Bill – Science and Children, 2013
Bill Robertson thinks that questioning the physics behind simple machines is a great idea because when he encounters the subject of simple machines in textbooks, activities, and classrooms, he seldom encounters, a scientific explanation of how they work. Instead, what one often sees is a discussion of load, effort, fulcrum, actual mechanical…
Descriptors: Science Instruction, Physics, Scientific Concepts, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie – Science and Children, 2014
The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…
Descriptors: Scientific Principles, Science Education, Elementary School Science, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Cheek, Kim A. – Science and Children, 2013
Earth's surface is constantly changing. Weathering, erosion, and deposition break down Earth materials, transport those materials, and place them in new locations. Children see evidence of these processes all around them. The sidewalk or playground surface cracks and has plants growing in it. Pieces of a rock wall or the sides of a building…
Descriptors: Grade 4, Elementary School Science, Earth Science, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Gilbert, Amy V.; Johns, Katherine E. – Science and Children, 2014
In supporting students toward literacy, teachers must provide experiences that support the formation of informed understandings of the nature of science (NOS), as well as a structure for developing evidence-based explanations. In this article the authors describe how they guided their students through this learning cycle to answer the essential…
Descriptors: Grade 4, Elementary School Science, Elementary School Students, Science Instruction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4