Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 7 |
Descriptor
Source
Society for Research on… | 7 |
Author
Ann A. O'Connell | 1 |
Benjamin Kelcey | 1 |
Christina Weiland | 1 |
Daniel Almirall | 1 |
Fangxing Bai | 1 |
James E. Pustejovsky | 1 |
Jia Quan | 1 |
Jing Zhang | 1 |
Jingru Zhang | 1 |
Kyle Cox | 1 |
Nivedita Bhaktha | 1 |
More ▼ |
Publication Type
Reports - Research | 7 |
Education Level
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 3 | 1 |
Primary Education | 1 |
Audience
Location
Massachusetts (Boston) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
What Works Clearinghouse Rating
Heterogeneity Estimation in Meta-Analysis: Investigating Methods for Dependent Effect Size Estimates
Jingru Zhang; James E. Pustejovsky – Society for Research on Educational Effectiveness, 2024
Background/Context: In meta-analysis examining educational intervention, characterizing heterogeneity and exploring the sources of variation in synthesized effects have become increasingly prominent areas of interest. When combining results from a collection of studies, statistical dependency among their effects size estimates will arise when a…
Descriptors: Meta Analysis, Investigations, Effect Size, Computation
Timothy Lycurgus; Daniel Almirall – Society for Research on Educational Effectiveness, 2024
Background: Education scientists are increasingly interested in constructing interventions that are adaptive over time to suit the evolving needs of students, classrooms, or schools. Such "adaptive interventions" (also referred to as dynamic treatment regimens or dynamic instructional regimes) determine which treatment should be offered…
Descriptors: Educational Research, Research Design, Randomized Controlled Trials, Intervention
Wei Li; Walter Leite; Jia Quan – Society for Research on Educational Effectiveness, 2023
Background: Multilevel randomized controlled trials (MRCTs) have been widely used to evaluate the causal effects of educational interventions. Traditionally, educational researchers and policymakers focused on the average treatment effects (ATE) of the intervention. Recently there has been an increasing interest in evaluating the heterogeneity of…
Descriptors: Artificial Intelligence, Identification, Hierarchical Linear Modeling, Randomized Controlled Trials
Yi Feng; Peter M. Steiner – Society for Research on Educational Effectiveness, 2022
Research Context: In educational research, "context effects" are often of inferential interest to researchers as well as of evaluative interest to policymakers. While student education outcomes likely depend on individual-level influences like individual academic achievement, school contexts may also make a difference. Such questions are…
Descriptors: Hierarchical Linear Modeling, Accuracy, Graphs, Educational Research
Fangxing Bai; Benjamin Kelcey; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2022
Background: Regression Discontinuous Design (RDD) is widely used in educational studies. Through RDD, researchers can obtain unbiased results when Randomized Experimental Design (RED) is inaccessible. Compared to RED, the RDD only requires a cut score variable (continuous) and a cutoff value to assign students to the treatment or control groups.…
Descriptors: Research Design, Regression (Statistics), Hierarchical Linear Modeling, Mediation Theory
Ann A. O'Connell; Nivedita Bhaktha; Jing Zhang – Society for Research on Educational Effectiveness, 2021
Background: Counts are familiar outcomes in education research settings, including those involving tests of interventions. Clustered data commonly occur in education research studies, given that data are often collected from students within classrooms or schools. There is a wide array of distributions and models that can be used for clustered…
Descriptors: Hierarchical Linear Modeling, Educational Research, Statistical Distributions, Multivariate Analysis
Tiffany Wu; Christina Weiland – Society for Research on Educational Effectiveness, 2024
Background/Context: Chronic absenteeism is a serious problem that has been linked to lower academic achievement, diminished socioemotional skills, and an increased likelihood of high school dropout (Allensworth et al., 2021; Gottfried, 2014). As a result, many schools have begun to embrace early warning systems (EWS) as a tool to identify and flag…
Descriptors: Attendance, Early Childhood Education, Intervention, Artificial Intelligence