NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Structural Equation Modeling:…165
Publication Type
Journal Articles165
Reports - Research165
Information Analyses1
Tests/Questionnaires1
Audience
Researchers2
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 165 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Philipp Sterner; Florian Pargent; Dominik Deffner; David Goretzko – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance (MI) describes the equivalence of measurement models of a construct across groups or time. When comparing latent means, MI is often stated as a prerequisite of meaningful group comparisons. The most common way to investigate MI is multi-group confirmatory factor analysis (MG-CFA). Although numerous guides exist, a recent…
Descriptors: Structural Equation Models, Causal Models, Measurement, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Tenko Raykov; Christine DiStefano; Natalja Menold – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This article is concerned with the assumption of linear temporal development that is often advanced in structural equation modeling-based longitudinal research. The linearity hypothesis is implemented in particular in the popular intercept-and-slope model as well as in more general models containing it as a component, such as longitudinal…
Descriptors: Structural Equation Models, Hypothesis Testing, Longitudinal Studies, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In parallel process latent growth curve mediation models, the mediation pathways from treatment to the intercept or slope of outcome through the intercept or slope of mediator are often of interest. In this study, we developed causal mediation analysis methods for these mediation pathways. Particularly, we provided causal definitions and…
Descriptors: Causal Models, Mediation Theory, Psychological Studies, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Peer reviewed Peer reviewed
Direct linkDirect link
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Chuenjai Sukpan; Rebecca M. Kuiper – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The (Random Intercept) Cross-Lagged Panel Model ((RI-)CLPM) is increasingly used in psychology and related fields to assess the longitudinal relationship of two or more variables on each other. Researchers are interested in the question which of the lagged effects is causally dominant receives considerable attention. However, currently used…
Descriptors: Causal Models, Psychological Studies, Multivariate Analysis, Cognitive Mapping
Peer reviewed Peer reviewed
Direct linkDirect link
Alexander Robitzsch; Oliver Lüdtke – Structural Equation Modeling: A Multidisciplinary Journal, 2025
The random intercept cross-lagged panel model (RICLPM) decomposes longitudinal associations between two processes X and Y into stable between-person associations and temporal within-person changes. In a recent study, Bailey et al. demonstrated through a simulation study that the between-person variance components in the RICLPM can occur only due…
Descriptors: Longitudinal Studies, Correlation, Time, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Walter P. Vispoel; Hyeryung Lee; Hyeri Hong – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We demonstrate how to analyze complete multivariate generalizability theory (GT) designs within structural equation modeling frameworks that encompass both individual subscale scores and composites formed from those scores. Results from numerous analyses of observed scores obtained from respondents who completed the recently updated form of the…
Descriptors: Structural Equation Models, Multivariate Analysis, Generalizability Theory, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Jinying Ouyang; Zhehan Jiang; Christine DiStefano; Junhao Pan; Yuting Han; Lingling Xu; Dexin Shi; Fen Cai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Precisely estimating factor scores is challenging, especially when models are mis-specified. Stemming from network analysis, centrality measures offer an alternative approach to estimating the scores. Using a two-fold simulation design with varying availability of a priori theoretical knowledge, this study implemented hybrid centrality to estimate…
Descriptors: Structural Equation Models, Computation, Network Analysis, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Russell P. Houpt; Kevin J. Grimm; Aaron T. McLaughlin; Daryl R. Van Tongeren – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Numerous methods exist to determine the optimal number of classes when using latent profile analysis (LPA), but none are consistently correct. Recently, the likelihood incremental percentage per parameter (LI3P) was proposed as a model effect-size measure. To evaluate the LI3P more thoroughly, we simulated 50,000 datasets, manipulating factors…
Descriptors: Structural Equation Models, Profiles, Sample Size, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Rohit Batra; Silvia A. Bunge; Emilio Ferrer – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Studying development processes, as they unfold over time, involves collecting repeated measures from individuals and modeling the changes over time. One methodological challenge in this type of longitudinal data is separating retest effects, due to the repeated assessments, from developmental processes such as maturation or age. In this article,…
Descriptors: Children, Adolescents, Longitudinal Studies, Test Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Guangjian Zhang; Lauren A. Trichtinger; Dayoung Lee; Ge Jiang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Many applications of structural equation modeling involve ordinal (e.g., Likert) variables. A popular way of dealing with ordinal variables is to estimate the model with polychoric correlations rather than Pearson correlations. Such an estimation also requires the asymptotic covariance matrix of polychoric correlations. It is computationally…
Descriptors: Structural Equation Models, Predictor Variables, Correlation, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
A. R. Georgeson – Structural Equation Modeling: A Multidisciplinary Journal, 2025
There is increasing interest in using factor scores in structural equation models and there have been numerous methodological papers on the topic. Nevertheless, sum scores, which are computed from adding up item responses, continue to be ubiquitous in practice. It is therefore important to compare simulation results involving factor scores to…
Descriptors: Structural Equation Models, Scores, Factor Analysis, Statistical Bias
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11