Publication Date
In 2025 | 0 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 14 |
Descriptor
Source
Structural Equation Modeling:… | 16 |
Author
Lu, Irene R. R. | 2 |
Thomas, D. Roland | 2 |
Ana Hernández-Dorado | 1 |
Beauducel, Andre | 1 |
Bryant, Fred B. | 1 |
Chen, Fang Fang | 1 |
Chin, Wynne W. | 1 |
Forero, Carlos G. | 1 |
Fox, John | 1 |
Gallardo-Pujol, David | 1 |
Gyeongcheol Cho | 1 |
More ▼ |
Publication Type
Journal Articles | 16 |
Reports - Evaluative | 8 |
Reports - Research | 7 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Pere J. Ferrando; Ana Hernández-Dorado; Urbano Lorenzo-Seva – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A frequent criticism of exploratory factor analysis (EFA) is that it does not allow correlated residuals to be modelled, while they can be routinely specified in the confirmatory (CFA) model. In this article, we propose an EFA approach in which both the common factor solution and the residual matrix are unrestricted (i.e., the correlated residuals…
Descriptors: Correlation, Factor Analysis, Models, Goodness of Fit
Teague R. Henry; Zachary F. Fisher; Kenneth A. Bollen – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Model-Implied Instrumental Variable Two-Stage Least Squares (MIIV-2SLS) is a limited information, equation-by-equation, noniterative estimator for latent variable models. Associated with this estimator are equation-specific tests of model misspecification. One issue with equation-specific tests is that they lack specificity, in that they indicate…
Descriptors: Bayesian Statistics, Least Squares Statistics, Structural Equation Models, Equations (Mathematics)
Han Du; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Real data are unlikely to be exactly normally distributed. Ignoring non-normality will cause misleading and unreliable parameter estimates, standard error estimates, and model fit statistics. For non-normal data, researchers have proposed a distributionally-weighted least squares (DLS) estimator to combines the normal theory based generalized…
Descriptors: Least Squares Statistics, Matrices, Statistical Distributions, Bayesian Statistics
Gyeongcheol Cho; Heungsun Hwang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Generalized structured component analysis (GSCA) is a multivariate method for specifying and examining interrelationships between observed variables and components. Despite its data-analytic flexibility honed over the decade, GSCA always defines every component as a linear function of observed variables, which can be less optimal when observed…
Descriptors: Prediction, Methods, Networks, Simulation
Bryant, Fred B.; Satorra, Albert – Structural Equation Modeling: A Multidisciplinary Journal, 2012
We highlight critical conceptual and statistical issues and how to resolve them in conducting Satorra-Bentler (SB) scaled difference chi-square tests. Concerning the original (Satorra & Bentler, 2001) and new (Satorra & Bentler, 2010) scaled difference tests, a fundamental difference exists in how to compute properly a model's scaling correction…
Descriptors: Statistical Analysis, Structural Equation Models, Goodness of Fit, Least Squares Statistics
Henseler, Jorg; Chin, Wynne W. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
In social and business sciences, the importance of the analysis of interaction effects between manifest as well as latent variables steadily increases. Researchers using partial least squares (PLS) to analyze interaction effects between latent variables need an overview of the available approaches as well as their suitability. This article…
Descriptors: Interaction, Least Squares Statistics, Computation, Prediction
Yang-Wallentin, Fan; Joreskog, Karl G.; Luo, Hao – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Ordinal variables are common in many empirical investigations in the social and behavioral sciences. Researchers often apply the maximum likelihood method to fit structural equation models to ordinal data. This assumes that the observed measures have normal distributions, which is not the case when the variables are ordinal. A better approach is…
Descriptors: Structural Equation Models, Factor Analysis, Least Squares Statistics, Computation
Forero, Carlos G.; Maydeu-Olivares, Alberto; Gallardo-Pujol, David – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Factor analysis models with ordinal indicators are often estimated using a 3-stage procedure where the last stage involves obtaining parameter estimates by least squares from the sample polychoric correlations. A simulation study involving 324 conditions (1,000 replications per condition) was performed to compare the performance of diagonally…
Descriptors: Factor Analysis, Models, Least Squares Statistics, Computation
Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…
Descriptors: Structural Equation Models, Simulation, Computer Software, Least Squares Statistics
Lu, Irene R. R.; Thomas, D. Roland – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This article considers models involving a single structural equation with latent explanatory and/or latent dependent variables where discrete items are used to measure the latent variables. Our primary focus is the use of scores as proxies for the latent variables and carrying out ordinary least squares (OLS) regression on such scores to estimate…
Descriptors: Least Squares Statistics, Computation, Item Response Theory, Structural Equation Models
Chen, Fang Fang – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Two Monte Carlo studies were conducted to examine the sensitivity of goodness of fit indexes to lack of measurement invariance at 3 commonly tested levels: factor loadings, intercepts, and residual variances. Standardized root mean square residual (SRMR) appears to be more sensitive to lack of invariance in factor loadings than in intercepts or…
Descriptors: Geometric Concepts, Sample Size, Monte Carlo Methods, Goodness of Fit
Beauducel, Andre; Herzberg, Philipp Yorck – Structural Equation Modeling: A Multidisciplinary Journal, 2006
This simulation study compared maximum likelihood (ML) estimation with weighted least squares means and variance adjusted (WLSMV) estimation. The study was based on confirmatory factor analyses with 1, 2, 4, and 8 factors, based on 250, 500, 750, and 1,000 cases, and on 5, 10, 20, and 40 variables with 2, 3, 4, 5, and 6 categories. There was no…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Classification, Sample Size
Lu, Irene R. R.; Thomas, D. Roland; Zumbo, Bruno D. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This article reviews the problems associated with using item response theory (IRT)-based latent variable scores for analytical modeling, discusses the connection between IRT and structural equation modeling (SEM)-based latent regression modeling for discrete data, and compares regression parameter estimates obtained using predicted IRT scores and…
Descriptors: Least Squares Statistics, Item Response Theory, Structural Equation Models, Comparative Analysis
Lei, Ming; Lomax, Richard G. – Structural Equation Modeling: A Multidisciplinary Journal, 2005
This simulation study investigated the robustness of structural equation modeling to different degrees of nonnormality under 2 estimation methods, generalized least squares and maximum likelihood, and 4 sample sizes, 100, 250, 500, and 1,000. Each of the slight and severe nonnormality degrees was comprised of pure skewness, pure kurtosis, and both…
Descriptors: Structural Equation Models, Simulation, Sample Size, Least Squares Statistics
Ximenez, Carmen – Structural Equation Modeling: A Multidisciplinary Journal, 2006
The recovery of weak factors has been extensively studied in the context of exploratory factor analysis. This article presents the results of a Monte Carlo simulation study of recovery of weak factor loadings in confirmatory factor analysis under conditions of estimation method (maximum likelihood vs. unweighted least squares), sample size,…
Descriptors: Monte Carlo Methods, Factor Analysis, Least Squares Statistics, Sample Size
Previous Page | Next Page »
Pages: 1 | 2