Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 5 |
Descriptor
Bayesian Statistics | 5 |
Comparative Analysis | 5 |
Simulation | 3 |
Structural Equation Models | 3 |
Computation | 2 |
Guidelines | 2 |
Longitudinal Studies | 2 |
Models | 2 |
Attribution Theory | 1 |
Computer Software | 1 |
Depression (Psychology) | 1 |
More ▼ |
Source
Structural Equation Modeling:… | 5 |
Author
Lee, Sik-Yum | 2 |
Song, Xin-Yuan | 2 |
Hong Zhang | 1 |
McArdle, John J. | 1 |
Ming-Chi Tseng | 1 |
Pan, Jun-Hao | 1 |
Saijun Zhao | 1 |
Wang, Lijuan | 1 |
Xia, Ye-Mao | 1 |
Zhiyong Zhang | 1 |
Publication Type
Journal Articles | 5 |
Reports - Research | 4 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2025
This study aims to estimate the latent interaction effect in the CLPM model through a two-step multiple imputation analysis. The estimation of within x within and between x within latent interaction under the CLPM model framework is compared between the one-step Bayesian LMS method and the two-step multiple imputation analysis through a simulation…
Descriptors: Guidelines, Bayesian Statistics, Self Esteem, Depression (Psychology)
Saijun Zhao; Zhiyong Zhang; Hong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Mediation analysis is widely applied in various fields of science, such as psychology, epidemiology, and sociology. In practice, many psychological and behavioral phenomena are dynamic, and the corresponding mediation effects are expected to change over time. However, most existing mediation methods assume a static mediation effect over time,…
Descriptors: Bayesian Statistics, Statistical Inference, Longitudinal Studies, Attribution Theory
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Descriptors: Structural Equation Models, Bayesian Statistics, Comparative Analysis, Computation
Wang, Lijuan; McArdle, John J. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…
Descriptors: Simulation, Bayesian Statistics, Comparative Analysis, Computation
Song, Xin-Yuan; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Structural equation models are widely appreciated in behavioral, social, and psychological research to model relations between latent constructs and manifest variables, and to control for measurement errors. Most applications of structural equation models are based on fully observed data that are independently distributed. However, hierarchical…
Descriptors: Psychological Studies, Life Satisfaction, Job Satisfaction, Structural Equation Models