Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 3 |
Descriptor
Source
Structural Equation Modeling:… | 3 |
Author
Darius Plikynas | 1 |
Davison, Mark L. | 1 |
Leonidas Sakalauskas | 1 |
Lijuan Wang | 1 |
Long, Jeffrey D. | 1 |
Shin, Tacksoo | 1 |
Vytautas Dulskis | 1 |
Yuan Fang | 1 |
Publication Type
Journal Articles | 3 |
Reports - Research | 3 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Leonidas Sakalauskas; Vytautas Dulskis; Darius Plikynas – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Dynamic structural equation models (DSEM) are designed for time series analysis of latent structures. Inherent to the application of DSEM is model parameter estimation, which has to be addressed in many applications by a single time series. In this context, however, the methods currently available either lack estimation quality or are…
Descriptors: Structural Equation Models, Time Management, Predictive Measurement, Data Collection
Yuan Fang; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the…
Descriptors: Structural Equation Models, Bayesian Statistics, Monte Carlo Methods, Longitudinal Studies
Shin, Tacksoo; Davison, Mark L.; Long, Jeffrey D. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
The purpose of this study is to investigate the effects of missing data techniques in longitudinal studies under diverse conditions. A Monte Carlo simulation examined the performance of 3 missing data methods in latent growth modeling: listwise deletion (LD), maximum likelihood estimation using the expectation and maximization algorithm with a…
Descriptors: Sample Size, Monte Carlo Methods, Structural Equation Models, Data Collection