NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shunji Wang; Katerina M. Marcoulides; Jiashan Tang; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A necessary step in applying bi-factor models is to evaluate the need for domain factors with a general factor in place. The conventional null hypothesis testing (NHT) was commonly used for such a purpose. However, the conventional NHT meets challenges when the domain loadings are weak or the sample size is insufficient. This article proposes…
Descriptors: Hypothesis Testing, Error of Measurement, Comparative Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Victoria Savalei; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2022
This article provides an overview of different computational options for inference following normal theory maximum likelihood (ML) estimation in structural equation modeling (SEM) with incomplete normal and nonnormal data. Complete data are covered as a special case. These computational options include whether the information matrix is observed or…
Descriptors: Structural Equation Models, Computation, Error of Measurement, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Wen, Zhonglin; Marsh, Herbert W.; Hau, Kit-Tai – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Standardized parameter estimates are routinely used to summarize the results of multiple regression models of manifest variables and structural equation models of latent variables, because they facilitate interpretation. Although the typical standardization of interaction terms is not appropriate for multiple regression models, straightforward…
Descriptors: Structural Equation Models, Multiple Regression Analysis, Interaction, Computation