Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 6 |
Descriptor
Error of Measurement | 6 |
Factor Structure | 6 |
Factor Analysis | 4 |
Sample Size | 3 |
Structural Equation Models | 3 |
Correlation | 2 |
Goodness of Fit | 2 |
Monte Carlo Methods | 2 |
Robustness (Statistics) | 2 |
Simulation | 2 |
Test Reliability | 2 |
More ▼ |
Source
Structural Equation Modeling:… | 6 |
Author
Alhija, Fadia Nasser-Abu | 1 |
Beretvas, S. Natasha | 1 |
Chunhua Cao | 1 |
David Goretzko | 1 |
Hao Wu | 1 |
Kim De Roover | 1 |
Murphy, Daniel L. | 1 |
Philipp Sterner | 1 |
Pituch, Keenan A. | 1 |
Vlachopoulos, Symeon P. | 1 |
Wisenbaker, Joseph | 1 |
More ▼ |
Publication Type
Journal Articles | 6 |
Reports - Research | 4 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Cross-loadings are common in multiple-factor confirmatory factor analysis (CFA) but often ignored in measurement invariance testing. This study examined the impact of ignoring cross-loadings on the sensitivity of fit measures (CFI, RMSEA, SRMR, SRMRu, AIC, BIC, SaBIC, LRT) to measurement noninvariance. The manipulated design factors included the…
Descriptors: Goodness of Fit, Error of Measurement, Sample Size, Factor Analysis
Philipp Sterner; Kim De Roover; David Goretzko – Structural Equation Modeling: A Multidisciplinary Journal, 2025
When comparing relations and means of latent variables, it is important to establish measurement invariance (MI). Most methods to assess MI are based on confirmatory factor analysis (CFA). Recently, new methods have been developed based on exploratory factor analysis (EFA); most notably, as extensions of multi-group EFA, researchers introduced…
Descriptors: Error of Measurement, Measurement Techniques, Factor Analysis, Structural Equation Models
Xijuan Zhang; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A full structural equation model (SEM) typically consists of both a measurement model (describing relationships between latent variables and observed scale items) and a structural model (describing relationships among latent variables). However, often researchers are primarily interested in testing hypotheses related to the structural model while…
Descriptors: Structural Equation Models, Goodness of Fit, Robustness (Statistics), Factor Structure
Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…
Descriptors: Sample Size, Simulation, Factor Structure, Statistical Analysis
Vlachopoulos, Symeon P. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
This study examined the extent of measurement invariance of the Basic Psychological Needs in Exercise Scale responses (BPNES; Vlachopoulos & Michailidou, 2006) across male (n = 716) and female (n = 1,147) exercise participants. BPNES responses from exercise participants attending private fitness centers (n = 1,012) and community exercise programs…
Descriptors: Psychological Patterns, Factor Structure, Measures (Individuals), Measurement
Alhija, Fadia Nasser-Abu; Wisenbaker, Joseph – Structural Equation Modeling: A Multidisciplinary Journal, 2006
A simulation study was conducted to examine the effect of item parceling on confirmatory factor analysis parameter estimates and their standard errors at different levels of sample size, number of indicators per factor, size of factor structure/pattern coefficients, magnitude of interfactor correlations, and variations in item-level data…
Descriptors: Monte Carlo Methods, Computation, Factor Analysis, Sample Size