NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 19 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ihnwhi Heo; Fan Jia; Sarah Depaoli – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The Bayesian piecewise growth model (PGM) is a useful class of models for analyzing nonlinear change processes that consist of distinct growth phases. In applications of Bayesian PGMs, it is important to accurately capture growth trajectories and carefully consider knot placements. The presence of missing data is another challenge researchers…
Descriptors: Bayesian Statistics, Goodness of Fit, Data Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Timothy R. Konold; Elizabeth A. Sanders – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Within the frequentist structural equation modeling (SEM) framework, adjudicating model quality through measures of fit has been an active area of methodological research. Complicating this conversation is research revealing that a higher quality measurement portion of a SEM can result in poorer estimates of overall model fit than lower quality…
Descriptors: Structural Equation Models, Reliability, Bayesian Statistics, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2025
This paper aims to advocate for a balanced approach to model fit evaluation in structural equation modeling (SEM). The ongoing debate surrounding chi-square test statistics and fit indices has been characterized by ambiguity and controversy. Despite the acknowledged limitations of relying solely on the chi-square test, its careful application can…
Descriptors: Monte Carlo Methods, Structural Equation Models, Goodness of Fit, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Chi-square tests based on maximum likelihood (ML) estimation of covariance structures often incorrectly over-reject the null hypothesis: [sigma] = [sigma(theta)] when the sample size is small. Reweighted least squares (RLS) avoids this problem. In some models, the vector of parameter must contain means, variances, and covariances, yet whether RLS…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Whittaker, Tiffany A. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Latent means methods such as multiple-indicator multiple-cause (MIMIC) and structured means modeling (SMM) allow researchers to determine whether or not a significant difference exists between groups' factor means. Strong invariance is typically recommended when interpreting latent mean differences. The extent of the impact of noninvariant…
Descriptors: Structural Equation Models, Error of Measurement, Statistical Analysis, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Prindle, John J.; McArdle, John J. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
This study used statistical simulation to calculate differential statistical power in dynamic structural equation models with groups (as in McArdle & Prindle, 2008). Patterns of between-group differences were simulated to provide insight into how model parameters influence power approximations. Chi-square and root mean square error of…
Descriptors: Statistical Analysis, Structural Equation Models, Goodness of Fit, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Tong, Xiaoxiao; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Recently a new mean scaled and skewness adjusted test statistic was developed for evaluating structural equation models in small samples and with potentially nonnormal data, but this statistic has received only limited evaluation. The performance of this statistic is compared to normal theory maximum likelihood and 2 well-known robust test…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Robustness (Statistics), Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Moshagen, Morten – Structural Equation Modeling: A Multidisciplinary Journal, 2012
The size of a model has been shown to critically affect the goodness of approximation of the model fit statistic "T" to the asymptotic chi-square distribution in finite samples. It is not clear, however, whether this "model size effect" is a function of the number of manifest variables, the number of free parameters, or both. It is demonstrated by…
Descriptors: Goodness of Fit, Structural Equation Models, Statistical Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Yanyun; Green, Samuel B. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Reliability can be estimated using structural equation modeling (SEM). Two potential problems with this approach are that estimates may be unstable with small sample sizes and biased with misspecified models. A Monte Carlo study was conducted to investigate the quality of SEM estimates of reliability by themselves and relative to coefficient…
Descriptors: Monte Carlo Methods, Structural Equation Models, Reliability, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Castro-Schilo, Laura; Widaman, Keith F.; Grimm, Kevin J. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
In 1959, Campbell and Fiske introduced the use of multitrait-multimethod (MTMM) matrices in psychology, and for the past 4 decades confirmatory factor analysis (CFA) has commonly been used to analyze MTMM data. However, researchers do not always fit CFA models when MTMM data are available; when CFA modeling is used, multiple models are available…
Descriptors: Multitrait Multimethod Techniques, Factor Analysis, Structural Equation Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Leite, Walter L.; Sandbach, Robert; Jin, Rong; MacInnes, Jann W.; Jackman, M. Grace-Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Because random assignment is not possible in observational studies, estimates of treatment effects might be biased due to selection on observable and unobservable variables. To strengthen causal inference in longitudinal observational studies of multiple treatments, we present 4 latent growth models for propensity score matched groups, and…
Descriptors: Structural Equation Models, Probability, Computation, Observation
Peer reviewed Peer reviewed
Direct linkDirect link
Shin, Tacksoo; Davison, Mark L.; Long, Jeffrey D. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
The purpose of this study is to investigate the effects of missing data techniques in longitudinal studies under diverse conditions. A Monte Carlo simulation examined the performance of 3 missing data methods in latent growth modeling: listwise deletion (LD), maximum likelihood estimation using the expectation and maximization algorithm with a…
Descriptors: Sample Size, Monte Carlo Methods, Structural Equation Models, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Herzog, Walter; Boomsma, Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Traditional estimators of fit measures based on the noncentral chi-square distribution (root mean square error of approximation [RMSEA], Steiger's [gamma], etc.) tend to overreject acceptable models when the sample size is small. To handle this problem, it is proposed to employ Bartlett's (1950), Yuan's (2005), or Swain's (1975) correction of the…
Descriptors: Intervals, Sample Size, Monte Carlo Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Fan, Xitao; Sivo, Stephen A. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
In research concerning model invariance across populations, researchers have discussed the limitations of the conventional chi-square difference test ([Delta] chi-square test). There have been some research efforts in using goodness-of-fit indexes (i.e., [Delta]goodness-of-fit indexes) for assessing multisample model invariance, and some specific…
Descriptors: Monte Carlo Methods, Goodness of Fit, Statistical Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Wei – Structural Equation Modeling: A Multidisciplinary Journal, 2008
A major issue in the utilization of covariance structure analysis is model fit evaluation. Recent years have witnessed increasing interest in various test statistics and so-called fit indexes, most of which are actually based on or closely related to F[subscript 0], a measure of model fit in the population. This study aims to provide a systematic…
Descriptors: Monte Carlo Methods, Statistical Analysis, Comparative Analysis, Structural Equation Models
Previous Page | Next Page ยป
Pages: 1  |  2