NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
E. Damiano D'Urso; Jesper Tijmstra; Jeroen K. Vermunt; Kim De Roover – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance (MI) is required for validly comparing latent constructs measured by multiple ordinal self-report items. Non-invariances may occur when disregarding (group differences in) an acquiescence response style (ARS; an agreeing tendency regardless of item content). If non-invariance results solely from neglecting ARS, one should…
Descriptors: Error of Measurement, Structural Equation Models, Construct Validity, Measurement Techniques
Peer reviewed Peer reviewed
Direct linkDirect link
Yuanfang Liu; Mark H. C. Lai; Ben Kelcey – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance holds when a latent construct is measured in the same way across different levels of background variables (continuous or categorical) while controlling for the true value of that construct. Using Monte Carlo simulation, this paper compares the multiple indicators, multiple causes (MIMIC) model and MIMIC-interaction to a…
Descriptors: Classification, Accuracy, Error of Measurement, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Ferrando, Pere J.; Lorenzo-Seva, Urbano; Chico, Eliseo – Structural Equation Modeling: A Multidisciplinary Journal, 2009
This article proposes procedures for simultaneously assessing and controlling acquiescence and social desirability in questionnaire items. The procedures are based on a semi-restricted factor-analytic tridimensional model, and can be used with binary, graded-response, or more continuous items. We discuss procedures for fitting the model (item…
Descriptors: Factor Analysis, Response Style (Tests), Questionnaires, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Noar, Seth M. – Structural Equation Modeling: A Multidisciplinary Journal, 2003
Across a variety of disciplines and areas of inquiry, reliable and valid measures are a cornerstone of quality research. This is the case because to have confidence in the findings of our studies, we must first have confidence in the quality of our measures. This article briefly reviews the literature on scale development and provides an empirical…
Descriptors: Measures (Individuals), Factor Analysis, Structural Equation Models, Test Validity