Publication Date
In 2025 | 1 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 39 |
Descriptor
Source
Structural Equation Modeling:… | 40 |
Author
Grimm, Kevin J. | 4 |
Blozis, Shelley A. | 3 |
Flora, David B. | 2 |
Harring, Jeffrey R. | 2 |
Hser, Yih-Ing | 2 |
Kim, Su-Young | 2 |
Lee, Sik-Yum | 2 |
McArdle, John J. | 2 |
Ming-Chi Tseng | 2 |
Raykov, Tenko | 2 |
Song, Xin-Yuan | 2 |
More ▼ |
Publication Type
Journal Articles | 40 |
Reports - Research | 21 |
Reports - Descriptive | 12 |
Reports - Evaluative | 7 |
Education Level
Elementary Education | 4 |
Grade 4 | 3 |
Grade 5 | 3 |
Grade 1 | 2 |
Grade 3 | 2 |
Preschool Education | 2 |
Early Childhood Education | 1 |
Grade 2 | 1 |
Grade 6 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
More ▼ |
Audience
Teachers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey… | 3 |
Early Childhood Longitudinal… | 2 |
Peabody Individual… | 1 |
Peabody Picture Vocabulary… | 1 |
Wechsler Intelligence Scale… | 1 |
Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2025
This study aims to estimate the latent interaction effect in the CLPM model through a two-step multiple imputation analysis. The estimation of within x within and between x within latent interaction under the CLPM model framework is compared between the one-step Bayesian LMS method and the two-step multiple imputation analysis through a simulation…
Descriptors: Guidelines, Bayesian Statistics, Self Esteem, Depression (Psychology)
Tenko Raykov; Christine DiStefano; Natalja Menold – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This article is concerned with the assumption of linear temporal development that is often advanced in structural equation modeling-based longitudinal research. The linearity hypothesis is implemented in particular in the popular intercept-and-slope model as well as in more general models containing it as a component, such as longitudinal…
Descriptors: Structural Equation Models, Hypothesis Testing, Longitudinal Studies, Research Methodology
Ming-Chi Tseng – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study simplifies the seven different cross-lagged panel models (CLPMs) by using the RSEM model for both inter-individual and intra-individual structures. In addition, the study incorporates the newly developed dynamic panel model (DPM), general cross-lagged model (GCLM) and the random intercept auto-regressive moving average (RI-ARMA) model.…
Descriptors: Evaluation Methods, Structural Equation Models, Maximum Likelihood Statistics, Longitudinal Studies
Jie Fang; Zhonglin Wen; Kit-Tai Hau – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Currently, dynamic structural equation modeling (DSEM) and residual DSEM (RDSEM) are commonly used in testing intensive longitudinal data (ILD). Researchers are interested in ILD mediation models, but their analyses are challenging. The present paper mathematically derived, empirically compared, and step-by-step demonstrated three types (i.e.,…
Descriptors: Structural Equation Models, Mediation Theory, Data Analysis, Longitudinal Studies
Yuan Fang; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Dynamic structural equation modeling (DSEM) is a useful technique for analyzing intensive longitudinal data. A challenge of applying DSEM is the missing data problem. The impact of missing data on DSEM, especially on widely applied DSEM such as the two-level vector autoregressive (VAR) cross-lagged models, however, is understudied. To fill the…
Descriptors: Structural Equation Models, Bayesian Statistics, Monte Carlo Methods, Longitudinal Studies
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
Nuria Real-Brioso; Eduardo Estrada; Pablo F. Cáncer – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Accelerated longitudinal designs (ALDs) provide an opportunity to capture long developmental periods in a shorter time framework using a relatively small number of assessments. Prior literature has investigated whether univariate developmental processes can be characterized with data obtained from ALDs. However, many important questions in…
Descriptors: Longitudinal Studies, Psychology, Cognitive Development, Brain Hemisphere Functions
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Andrea Hasl; Manuel Voelkle; Charles Driver; Julia Kretschmann; Martin Brunner – Structural Equation Modeling: A Multidisciplinary Journal, 2024
To examine developmental processes, intervention effects, or both, longitudinal studies often aim to include measurement intervals that are equally spaced for all participants. In reality, however, this goal is hardly ever met. Although different approaches have been proposed to deal with this issue, few studies have investigated the potential…
Descriptors: Foreign Countries, Elementary School Students, Secondary School Students, Student Promotion
Rohit Batra; Silvia A. Bunge; Emilio Ferrer – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Studying development processes, as they unfold over time, involves collecting repeated measures from individuals and modeling the changes over time. One methodological challenge in this type of longitudinal data is separating retest effects, due to the repeated assessments, from developmental processes such as maturation or age. In this article,…
Descriptors: Children, Adolescents, Longitudinal Studies, Test Reliability
Grimm, Kevin J. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Latent difference score (LDS) models combine benefits derived from autoregressive and latent growth curve models allowing for time-dependent influences and systematic change. The specification and descriptions of LDS models include an initial level of ability or trait plus an accumulation of changes. A limitation of this specification is that the…
Descriptors: Structural Equation Models, Time, Change, Coding
Shiyko, Mariya P.; Li, Yuelin; Rindskopf, David – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Intensive longitudinal data (ILD) have become increasingly common in the social and behavioral sciences; count variables, such as the number of daily smoked cigarettes, are frequently used outcomes in many ILD studies. We demonstrate a generalized extension of growth mixture modeling (GMM) to Poisson-distributed ILD for identifying qualitatively…
Descriptors: Smoking, Behavior Change, Longitudinal Studies, Data
Kim, Su-Young – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Just as growth mixture models are useful with single-phase longitudinal data, multiphase growth mixture models can be used with multiple-phase longitudinal data. One of the practically important issues in single- and multiphase growth mixture models is the sample size requirements for accurate estimation. In a Monte Carlo simulation study, the…
Descriptors: Structural Equation Models, Sample Size, Computation, Monte Carlo Methods
Peugh, James L.; DiLillo, David; Panuzio, Jillian – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Mixed-dyadic data, collected from distinguishable (nonexchangeable) or indistinguishable (exchangeable) dyads, require statistical analysis techniques that model the variation within dyads and between dyads appropriately. The purpose of this article is to provide a tutorial for performing structural equation modeling analyses of cross-sectional…
Descriptors: Structural Equation Models, Data Analysis, Statistical Analysis, Computer Software
Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…
Descriptors: Structural Equation Models, Longitudinal Studies, Bayesian Statistics, Drug Use