Publication Date
In 2025 | 3 |
Since 2024 | 6 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 13 |
Descriptor
Factor Analysis | 14 |
Measurement Techniques | 14 |
Structural Equation Models | 10 |
Simulation | 7 |
Evaluation Methods | 6 |
Error of Measurement | 4 |
Factor Structure | 4 |
Computation | 3 |
Goodness of Fit | 3 |
Scores | 3 |
Computer Software | 2 |
More ▼ |
Source
Structural Equation Modeling:… | 14 |
Author
Kim De Roover | 3 |
Jeroen K. Vermunt | 2 |
Amemiya, Yasuo | 1 |
Asparouhov, Tihomir | 1 |
Barendse, M. T. | 1 |
Bengt Muthén | 1 |
Christine DiStefano | 1 |
David Goretzko | 1 |
Dexin Shi | 1 |
E. Damiano D'Urso | 1 |
Elizabeth A. Sanders | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Research | 6 |
Reports - Descriptive | 4 |
Reports - Evaluative | 4 |
Education Level
Elementary Education | 1 |
Grade 3 | 1 |
Audience
Researchers | 1 |
Location
Japan | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Jinying Ouyang; Zhehan Jiang; Christine DiStefano; Junhao Pan; Yuting Han; Lingling Xu; Dexin Shi; Fen Cai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Precisely estimating factor scores is challenging, especially when models are mis-specified. Stemming from network analysis, centrality measures offer an alternative approach to estimating the scores. Using a two-fold simulation design with varying availability of a priori theoretical knowledge, this study implemented hybrid centrality to estimate…
Descriptors: Structural Equation Models, Computation, Network Analysis, Scores
Timothy R. Konold; Elizabeth A. Sanders; Kelvin Afolabi – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Measurement invariance (MI) is an essential part of validity evidence concerned with ensuring that tests function similarly across groups, contexts, and time. Most evaluations of MI involve multigroup confirmatory factor analyses (MGCFA) that assume simple structure. However, recent research has shown that constraining non-target indicators to…
Descriptors: Evaluation Methods, Error of Measurement, Validity, Monte Carlo Methods
Philipp Sterner; Kim De Roover; David Goretzko – Structural Equation Modeling: A Multidisciplinary Journal, 2025
When comparing relations and means of latent variables, it is important to establish measurement invariance (MI). Most methods to assess MI are based on confirmatory factor analysis (CFA). Recently, new methods have been developed based on exploratory factor analysis (EFA); most notably, as extensions of multi-group EFA, researchers introduced…
Descriptors: Error of Measurement, Measurement Techniques, Factor Analysis, Structural Equation Models
E. Damiano D'Urso; Jesper Tijmstra; Jeroen K. Vermunt; Kim De Roover – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance (MI) is required for validly comparing latent constructs measured by multiple ordinal self-report items. Non-invariances may occur when disregarding (group differences in) an acquiescence response style (ARS; an agreeing tendency regardless of item content). If non-invariance results solely from neglecting ARS, one should…
Descriptors: Error of Measurement, Structural Equation Models, Construct Validity, Measurement Techniques
Manuel T. Rein; Jeroen K. Vermunt; Kim De Roover; Leonie V. D. E. Vogelsmeier – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Researchers often study dynamic processes of latent variables in everyday life, such as the interplay of positive and negative affect over time. An intuitive approach is to first estimate the measurement model of the latent variables, then compute factor scores, and finally use these factor scores as observed scores in vector autoregressive…
Descriptors: Measurement Techniques, Factor Analysis, Scores, Validity
Barendse, M. T.; Oort, F. J.; Werner, C. S.; Ligtvoet, R.; Schermelleh-Engel, K. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Measurement bias is defined as a violation of measurement invariance, which can be investigated through multigroup factor analysis (MGFA), by testing across-group differences in intercepts (uniform bias) and factor loadings (nonuniform bias). Restricted factor analysis (RFA) can also be used to detect measurement bias. To also enable nonuniform…
Descriptors: Factor Analysis, Item Response Theory, Test Bias, Measurement Techniques
Jones-Farmer, L. Allison – Structural Equation Modeling: A Multidisciplinary Journal, 2010
When comparing latent variables among groups, it is important to first establish the equivalence or invariance of the measurement model across groups. Confirmatory factor analysis (CFA) is a commonly used methodological approach to examine measurement equivalence/invariance (ME/I). Within the CFA framework, the chi-square goodness-of-fit test and…
Descriptors: Factor Structure, Factor Analysis, Evaluation Research, Goodness of Fit
Schweizer, Karl – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Structural equation modeling provides the framework for investigating experimental effects on the basis of variances and covariances in repeated measurements. A special type of confirmatory factor analysis as part of this framework enables the appropriate representation of the experimental effect and the separation of experimental and…
Descriptors: Structural Equation Models, Factor Analysis, Reaction Time, Scores
French, Brian F.; Finch, W. Holmes – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Multigroup confirmatory factor analysis (MCFA) is a popular method for the examination of measurement invariance and specifically, factor invariance. Recent research has begun to focus on using MCFA to detect invariance for test items. MCFA requires certain parameters (e.g., factor loadings) to be constrained for model identification, which are…
Descriptors: Test Items, Simulation, Factor Structure, Factor Analysis
Raykov, Tenko; Amemiya, Yasuo – Structural Equation Modeling: A Multidisciplinary Journal, 2008
A structural equation modeling method for examining time-invariance of variable specificity in longitudinal studies with multiple measures is outlined, which is developed within a confirmatory factor-analytic framework. The approach represents a likelihood ratio test for the hypothesis of stability in the specificity part of the residual term…
Descriptors: Structural Equation Models, Longitudinal Studies, Computation, Time
Asparouhov, Tihomir; Muthen, Bengt – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Exploratory factor analysis (EFA) is a frequently used multivariate analysis technique in statistics. Jennrich and Sampson (1966) solved a significant EFA factor loading matrix rotation problem by deriving the direct Quartimin rotation. Jennrich was also the first to develop standard errors for rotated solutions, although these have still not made…
Descriptors: Structural Equation Models, Testing, Factor Analysis, Research Methodology
Quilty, Lena C.; Oakman, Jonathan M.; Risko, Evan – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Investigators of personality assessment are becoming aware that using positively and negatively worded items in questionnaires to prevent acquiescence may negatively impact construct validity. The Rosenberg Self-Esteem Scale (RSES) has demonstrated a bifactorial structure typically proposed to result from these method effects. Recent work suggests…
Descriptors: Measures (Individuals), Personality Traits, Test Validity, Personality Assessment
Glockner-Rist, Angelika; Hoijtink, Herbert – Structural Equation Modeling: A Multidisciplinary Journal, 2003
Both structural equation modeling (SEM) and item response theory (IRT) can be used for factor analysis of dichotomous item responses. In this case, the measurement models of both approaches are formally equivalent. They were refined within and across different disciplines, and make complementary contributions to central measurement problems…
Descriptors: Social Science Research, Measurement Techniques, Social Sciences, Item Response Theory