Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 10 |
Descriptor
Probability | 10 |
Structural Equation Models | 9 |
Statistical Analysis | 5 |
Computation | 3 |
Computer Software | 3 |
Simulation | 3 |
Adolescents | 2 |
Causal Models | 2 |
Comparative Analysis | 2 |
Drinking | 2 |
Goodness of Fit | 2 |
More ▼ |
Source
Structural Equation Modeling:… | 10 |
Author
Collins, Linda M. | 2 |
Lanza, Stephanie T. | 2 |
Abar, Beau | 1 |
Bray, Bethany C. | 1 |
Cheung, Mike W. L. | 1 |
Coffman, Donna L. | 1 |
Cribbie, Robert A. | 1 |
Daniel Seddig | 1 |
Hamaker, Ellen L. | 1 |
Jackman, M. Grace-Anne | 1 |
Jin, Rong | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Research | 6 |
Reports - Descriptive | 2 |
Reports - Evaluative | 2 |
Education Level
Elementary Education | 1 |
Grade 1 | 1 |
Grade 2 | 1 |
Grade 3 | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
High Schools | 1 |
Audience
Researchers | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
National Longitudinal Survey… | 1 |
What Works Clearinghouse Rating
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Coffman, Donna L. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
Descriptors: Structural Equation Models, Simulation, Regression (Statistics), Probability
Abar, Beau; Loken, Eric – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Latent class models are becoming more popular in behavioral research. When models with a large number of latent classes relative to the number of manifest indicators are estimated, researchers must consider the possibility that the model is not identified. It is not enough to determine that the model has positive degrees of freedom. A well-known…
Descriptors: Probability, Statistical Bias, Multivariate Analysis, Models
Raykov, Tenko – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article is concerned with the question of whether the missing data mechanism routinely referred to as missing completely at random (MCAR) is statistically examinable via a test for lack of distributional differences between groups with observed and missing data, and related consequences. A discussion is initially provided, from a formal logic…
Descriptors: Data Analysis, Statistical Analysis, Probability, Structural Equation Models
Bray, Bethany C.; Lanza, Stephanie T.; Collins, Linda M. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
To understand one developmental process, it is often helpful to investigate its relations with other developmental processes. Statistical methods that model development in multiple processes simultaneously over time include latent growth curve models with time-varying covariates, multivariate latent growth curve models, and dual trajectory models.…
Descriptors: Structural Equation Models, Development, Statistical Analysis, Drinking
Leite, Walter L.; Sandbach, Robert; Jin, Rong; MacInnes, Jann W.; Jackman, M. Grace-Anne – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Because random assignment is not possible in observational studies, estimates of treatment effects might be biased due to selection on observable and unobservable variables. To strengthen causal inference in longitudinal observational studies of multiple treatments, we present 4 latent growth models for propensity score matched groups, and…
Descriptors: Structural Equation Models, Probability, Computation, Observation
Cheung, Mike W. L. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Mediators are variables that explain the association between an independent variable and a dependent variable. Structural equation modeling (SEM) is widely used to test models with mediating effects. This article illustrates how to construct confidence intervals (CIs) of the mediating effects for a variety of models in SEM. Specifically, mediating…
Descriptors: Structural Equation Models, Probability, Intervals, Sample Size
Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…
Descriptors: Structural Equation Models, Simulation, Computer Software, Least Squares Statistics
Cribbie, Robert A. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Researchers conducting structural equation modeling analyses rarely, if ever, control for the inflated probability of Type I errors when evaluating the statistical significance of multiple parameters in a model. In this study, the Type I error control, power and true model rates of famsilywise and false discovery rate controlling procedures were…
Descriptors: Probability, Inferences, Structural Equation Models, Statistical Significance
Lanza, Stephanie T.; Collins, Linda M.; Lemmon, David R.; Schafer, Joseph L. – Structural Equation Modeling: A Multidisciplinary Journal, 2007
Latent class analysis (LCA) is a statistical method used to identify a set of discrete, mutually exclusive latent classes of individuals based on their responses to a set of observed categorical variables. In multiple-group LCA, both the measurement part and structural part of the model can vary across groups, and measurement invariance across…
Descriptors: Structural Equation Models, Syntax, Drinking, Statistical Analysis