Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 3 |
Descriptor
Sampling | 3 |
Statistical Inference | 3 |
Monte Carlo Methods | 2 |
Structural Equation Models | 2 |
Accuracy | 1 |
Bayesian Statistics | 1 |
Classification | 1 |
Computation | 1 |
Interpersonal Relationship | 1 |
Mediation Theory | 1 |
Sample Size | 1 |
More ▼ |
Source
Structural Equation Modeling:… | 3 |
Author
Bauer, Daniel J. | 1 |
Ke-Hai Yuan | 1 |
Kenny, David A. | 1 |
Ledermann, Thomas | 1 |
Losardo, Diane | 1 |
Macho, Siegfried | 1 |
Meng Qiu | 1 |
Pek, Jolynn | 1 |
Publication Type
Journal Articles | 3 |
Reports - Descriptive | 2 |
Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meng Qiu; Ke-Hai Yuan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Latent class analysis (LCA) is a widely used technique for detecting unobserved population heterogeneity in cross-sectional data. Despite its popularity, the performance of LCA is not well understood. In this study, we evaluate the performance of LCA with binary data by examining classification accuracy, parameter estimation accuracy, and coverage…
Descriptors: Classification, Sample Size, Monte Carlo Methods, Social Science Research
Ledermann, Thomas; Macho, Siegfried; Kenny, David A. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The assessment of mediation in dyadic data is an important issue if researchers are to test process models. Using an extended version of the actor-partner interdependence model the estimation and testing of mediation is complex, especially when dyad members are distinguishable (e.g., heterosexual couples). We show how the complexity of the model…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Interpersonal Relationship
Pek, Jolynn; Losardo, Diane; Bauer, Daniel J. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Computation