Publication Date
In 2025 | 1 |
Since 2024 | 7 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 19 |
Descriptor
Source
Structural Equation Modeling:… | 19 |
Author
Jeroen K. Vermunt | 2 |
Kim De Roover | 2 |
Alhija, Fadia Nasser-Abu | 1 |
Ana Hernández-Dorado | 1 |
Asparouhov, Tihomir | 1 |
Baldasaro, Ruth E. | 1 |
Barendse, M. T. | 1 |
Bauer, Daniel J. | 1 |
Beauducel, Andre | 1 |
Bengt Muthén | 1 |
Carl F. Falk | 1 |
More ▼ |
Publication Type
Journal Articles | 19 |
Reports - Research | 12 |
Reports - Descriptive | 4 |
Reports - Evaluative | 3 |
Education Level
Elementary Education | 1 |
Grade 3 | 1 |
Audience
Location
Japan | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lihan Chen; Milica Miocevic; Carl F. Falk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data pooling is a powerful strategy in empirical research. However, combining multiple datasets often results in a large amount of missing data, as variables that are not present in some datasets effectively contain missing values for all participants in those datasets. Furthermore, data pooling typically leads to a mix of continuous and…
Descriptors: Simulation, Factor Analysis, Models, Statistical Analysis
Tihomir Asparouhov; Bengt Muthén – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Penalized structural equation models (PSEM) is a new powerful estimation technique that can be used to tackle a variety of difficult structural estimation problems that can not be handled with previously developed methods. In this paper we describe the PSEM framework and illustrate the quality of the method with simulation studies.…
Descriptors: Structural Equation Models, Computation, Factor Analysis, Measurement Techniques
Jinying Ouyang; Zhehan Jiang; Christine DiStefano; Junhao Pan; Yuting Han; Lingling Xu; Dexin Shi; Fen Cai – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Precisely estimating factor scores is challenging, especially when models are mis-specified. Stemming from network analysis, centrality measures offer an alternative approach to estimating the scores. Using a two-fold simulation design with varying availability of a priori theoretical knowledge, this study implemented hybrid centrality to estimate…
Descriptors: Structural Equation Models, Computation, Network Analysis, Scores
Pere J. Ferrando; Ana Hernández-Dorado; Urbano Lorenzo-Seva – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A frequent criticism of exploratory factor analysis (EFA) is that it does not allow correlated residuals to be modelled, while they can be routinely specified in the confirmatory (CFA) model. In this article, we propose an EFA approach in which both the common factor solution and the residual matrix are unrestricted (i.e., the correlated residuals…
Descriptors: Correlation, Factor Analysis, Models, Goodness of Fit
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
E. Damiano D'Urso; Jesper Tijmstra; Jeroen K. Vermunt; Kim De Roover – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance (MI) is required for validly comparing latent constructs measured by multiple ordinal self-report items. Non-invariances may occur when disregarding (group differences in) an acquiescence response style (ARS; an agreeing tendency regardless of item content). If non-invariance results solely from neglecting ARS, one should…
Descriptors: Error of Measurement, Structural Equation Models, Construct Validity, Measurement Techniques
Manuel T. Rein; Jeroen K. Vermunt; Kim De Roover; Leonie V. D. E. Vogelsmeier – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Researchers often study dynamic processes of latent variables in everyday life, such as the interplay of positive and negative affect over time. An intuitive approach is to first estimate the measurement model of the latent variables, then compute factor scores, and finally use these factor scores as observed scores in vector autoregressive…
Descriptors: Measurement Techniques, Factor Analysis, Scores, Validity
Barendse, M. T.; Oort, F. J.; Werner, C. S.; Ligtvoet, R.; Schermelleh-Engel, K. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Measurement bias is defined as a violation of measurement invariance, which can be investigated through multigroup factor analysis (MGFA), by testing across-group differences in intercepts (uniform bias) and factor loadings (nonuniform bias). Restricted factor analysis (RFA) can also be used to detect measurement bias. To also enable nonuniform…
Descriptors: Factor Analysis, Item Response Theory, Test Bias, Measurement Techniques
Wang, Lijuan; Zhang, Zhiyong – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This study investigated influences of censored data on mediation analysis. Mediation effect estimates can be biased and inefficient with censoring on any one of the input, mediation, and output variables. A Bayesian Tobit approach was introduced to estimate and test mediation effects with censored data. Simulation results showed that the Bayesian…
Descriptors: Statistical Analysis, Mediation Theory, Censorship, Bayesian Statistics
Bauer, Daniel J.; Baldasaro, Ruth E.; Gottfredson, Nisha C. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Structural equation models are commonly used to estimate relationships between latent variables. Almost universally, the fitted models specify that these relationships are linear in form. This assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques. This article presents and evaluates two procedures that can…
Descriptors: Structural Equation Models, Mixed Methods Research, Statistical Analysis, Sampling
Equivalence and Differences between Structural Equation Modeling and State-Space Modeling Techniques
Chow, Sy-Miin; Ho, Moon-ho R.; Hamaker, Ellen L.; Dolan, Conor V. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and…
Descriptors: Structural Equation Models, Differences, Statistical Analysis, Models
Yang-Wallentin, Fan; Joreskog, Karl G.; Luo, Hao – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Ordinal variables are common in many empirical investigations in the social and behavioral sciences. Researchers often apply the maximum likelihood method to fit structural equation models to ordinal data. This assumes that the observed measures have normal distributions, which is not the case when the variables are ordinal. A better approach is…
Descriptors: Structural Equation Models, Factor Analysis, Least Squares Statistics, Computation
Johnson, Emily C.; Meade, Adam W.; DuVernet, Amy M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Confirmatory factor analytic tests of measurement invariance (MI) require a referent indicator (RI) for model identification. Although the assumption that the RI is perfectly invariant across groups is acknowledged as problematic, the literature provides relatively little guidance for researchers to identify the conditions under which the practice…
Descriptors: Measurement, Validity, Factor Analysis, Models
Ferrando, Pere J. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
Most personality tests are made up of Likert-type items and analyzed by means of factor analysis (FA). In this type of application, the fit of the model at the level of individual respondents is almost never assessed. This article proposes procedures for assessing individual fit (scalability). The procedures are intended for the analysis of…
Descriptors: Personality, Factor Analysis, Personality Measures, Item Response Theory
French, Brian F.; Finch, W. Holmes – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Multigroup confirmatory factor analysis (MCFA) is a popular method for the examination of measurement invariance and specifically, factor invariance. Recent research has begun to focus on using MCFA to detect invariance for test items. MCFA requires certain parameters (e.g., factor loadings) to be constrained for model identification, which are…
Descriptors: Test Items, Simulation, Factor Structure, Factor Analysis
Previous Page | Next Page »
Pages: 1 | 2