NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, David; Keller, Bryan – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article examines the effects of clustering in latent class analysis. A comprehensive simulation study is conducted, which begins by specifying a true multilevel latent class model with varying within- and between-cluster sample sizes, varying latent class proportions, and varying intraclass correlations. These models are then estimated under…
Descriptors: Multivariate Analysis, Sample Size, Correlation, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Price, Larry R. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
Descriptors: Sample Size, Time, Bayesian Statistics, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…
Descriptors: Markov Processes, Factor Analysis, Statistical Bias, Evaluation Research
Peer reviewed Peer reviewed
Direct linkDirect link
Herzog, Walter; Boomsma, Anne; Reinecke, Sven – Structural Equation Modeling: A Multidisciplinary Journal, 2007
According to Kenny and McCoach (2003), chi-square tests of structural equation models produce inflated Type I error rates when the degrees of freedom increase. So far, the amount of this bias in large models has not been quantified. In a Monte Carlo study of confirmatory factor models with a range of 48 to 960 degrees of freedom it was found that…
Descriptors: Monte Carlo Methods, Structural Equation Models, Effect Size, Maximum Likelihood Statistics