Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 24 |
Descriptor
Source
Structural Equation Modeling:… | 24 |
Author
Enders, Craig K. | 2 |
A. R. Georgeson | 1 |
Abar, Beau | 1 |
Baldasaro, Ruth E. | 1 |
Bandalos, Deborah L. | 1 |
Bauer, Daniel J. | 1 |
Bentler, Peter M. | 1 |
Boomsma, Anne | 1 |
Bray, Bethany C. | 1 |
Carl Falk | 1 |
Castro-Schilo, Laura | 1 |
More ▼ |
Publication Type
Journal Articles | 24 |
Reports - Research | 18 |
Reports - Evaluative | 5 |
Reports - Descriptive | 1 |
Education Level
Elementary Education | 3 |
Grade 1 | 2 |
Grade 4 | 2 |
Grade 5 | 2 |
Early Childhood Education | 1 |
Grade 2 | 1 |
Grade 3 | 1 |
Grade 6 | 1 |
Intermediate Grades | 1 |
Primary Education | 1 |
Audience
Location
Germany | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Center for Epidemiologic… | 1 |
Child Behavior Checklist | 1 |
Early Childhood Longitudinal… | 1 |
National Longitudinal Study… | 1 |
What Works Clearinghouse Rating
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
A. R. Georgeson – Structural Equation Modeling: A Multidisciplinary Journal, 2025
There is increasing interest in using factor scores in structural equation models and there have been numerous methodological papers on the topic. Nevertheless, sum scores, which are computed from adding up item responses, continue to be ubiquitous in practice. It is therefore important to compare simulation results involving factor scores to…
Descriptors: Structural Equation Models, Scores, Factor Analysis, Statistical Bias
Yuejin Zhou; Wenwu Wang; Tao Hu; Tiejun Tong; Zhonghua Liu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Causal mediation analysis is a popular approach for investigating whether the effect of an exposure on an outcome is through a mediator to better understand the underlying causal mechanism. In recent literature, mediation analysis with multiple mediators has been proposed for continuous and dichotomous outcomes. In contrast, methods for mediation…
Descriptors: Regression (Statistics), Causal Models, Evaluation Methods, Vignettes
Minjung Kim; Christa Winkler; James Uanhoro; Joshua Peri; John Lochman – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Cluster memberships associated with the mediation effect are often changed due to the temporal distance between the cause-and-effect variables in longitudinal data. Nevertheless, current practices in multilevel mediation analysis mostly assume a purely hierarchical data structure. A Monte Carlo simulation study is conducted to examine the…
Descriptors: Hierarchical Linear Modeling, Mediation Theory, Multivariate Analysis, Causal Models
Abar, Beau; Loken, Eric – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Latent class models are becoming more popular in behavioral research. When models with a large number of latent classes relative to the number of manifest indicators are estimated, researchers must consider the possibility that the model is not identified. It is not enough to determine that the model has positive degrees of freedom. A well-known…
Descriptors: Probability, Statistical Bias, Multivariate Analysis, Models
Jak, Suzanne; Oort, Frans J.; Dolan, Conor V. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
We present a test for cluster bias, which can be used to detect violations of measurement invariance across clusters in 2-level data. We show how measurement invariance assumptions across clusters imply measurement invariance across levels in a 2-level factor model. Cluster bias is investigated by testing whether the within-level factor loadings…
Descriptors: Statistical Bias, Measurement, Structural Equation Models, Hierarchical Linear Modeling
Lanza, Stephanie T.; Tan, Xianming; Bray, Bethany C. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Although prediction of class membership from observed variables in latent class analysis is well understood, predicting an observed distal outcome from latent class membership is more complicated. A flexible model-based approach is proposed to empirically derive and summarize the class-dependent density functions of distal outcomes with…
Descriptors: Structural Equation Models, Monte Carlo Methods, Comparative Analysis, Statistical Analysis
Kaplan, David; Keller, Bryan – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article examines the effects of clustering in latent class analysis. A comprehensive simulation study is conducted, which begins by specifying a true multilevel latent class model with varying within- and between-cluster sample sizes, varying latent class proportions, and varying intraclass correlations. These models are then estimated under…
Descriptors: Multivariate Analysis, Sample Size, Correlation, Models
Preacher, Kristopher J.; Zhang, Zhen; Zyphur, Michael J. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Multilevel modeling (MLM) is a popular way of assessing mediation effects with clustered data. Two important limitations of this approach have been identified in prior research and a theoretical rationale has been provided for why multilevel structural equation modeling (MSEM) should be preferred. However, to date, no empirical evidence of MSEM's…
Descriptors: Data, Structural Equation Models, Statistical Analysis, Computation
Geiser, Christian; Eid, Michael; West, Stephen G.; Lischetzke, Tanja; Nussbeck, Fridtjof W. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Multimethod data analysis is a complex procedure that is often used to examine the degree to which different measures of the same construct converge in the assessment of this construct. Several authors have called for a greater understanding of the definition and meaning of method effects in different models for multimethod data. In this article,…
Descriptors: Structural Equation Models, Factor Analysis, Multitrait Multimethod Techniques, Comparative Analysis
Price, Larry R. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
Descriptors: Sample Size, Time, Bayesian Statistics, Structural Equation Models
DeMars, Christine E. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
In structural equation modeling software, either limited-information (bivariate proportions) or full-information item parameter estimation routines could be used for the 2-parameter item response theory (IRT) model. Limited-information methods assume the continuous variable underlying an item response is normally distributed. For skewed and…
Descriptors: Item Response Theory, Structural Equation Models, Computation, Computer Software
Bauer, Daniel J.; Baldasaro, Ruth E.; Gottfredson, Nisha C. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Structural equation models are commonly used to estimate relationships between latent variables. Almost universally, the fitted models specify that these relationships are linear in form. This assumption is rarely checked empirically, largely for lack of appropriate diagnostic techniques. This article presents and evaluates two procedures that can…
Descriptors: Structural Equation Models, Mixed Methods Research, Statistical Analysis, Sampling
Depaoli, Sarah – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…
Descriptors: Markov Processes, Factor Analysis, Statistical Bias, Evaluation Research
Enders, Craig K. – Structural Equation Modeling: A Multidisciplinary Journal, 2008
Recent missing data studies have argued in favor of an "inclusive analytic strategy" that incorporates auxiliary variables into the estimation routine, and Graham (2003) outlined methods for incorporating auxiliary variables into structural equation analyses. In practice, the auxiliary variables often have missing values, so it is reasonable to…
Descriptors: Structural Equation Models, Research Methodology, Maximum Likelihood Statistics, Simulation
Previous Page | Next Page ยป
Pages: 1 | 2