Publication Date
In 2025 | 10 |
Since 2024 | 57 |
Since 2021 (last 5 years) | 66 |
Since 2016 (last 10 years) | 66 |
Since 2006 (last 20 years) | 246 |
Descriptor
Source
Structural Equation Modeling:… | 275 |
Author
Raykov, Tenko | 15 |
Bentler, Peter M. | 9 |
Lee, Sik-Yum | 7 |
Song, Xin-Yuan | 7 |
Bauer, Daniel J. | 5 |
Enders, Craig K. | 5 |
Grimm, Kevin J. | 5 |
Leite, Walter L. | 5 |
Marcoulides, George A. | 5 |
Marsh, Herbert W. | 5 |
Savalei, Victoria | 5 |
More ▼ |
Publication Type
Journal Articles | 275 |
Reports - Research | 141 |
Reports - Descriptive | 75 |
Reports - Evaluative | 58 |
Information Analyses | 2 |
Guides - Non-Classroom | 1 |
Tests/Questionnaires | 1 |
Education Level
Elementary Education | 8 |
Higher Education | 7 |
Postsecondary Education | 5 |
Grade 4 | 4 |
Grade 5 | 4 |
Secondary Education | 4 |
Grade 1 | 3 |
Grade 3 | 3 |
High Schools | 3 |
Preschool Education | 3 |
Early Childhood Education | 2 |
More ▼ |
Audience
Researchers | 7 |
Teachers | 2 |
Location
Germany | 5 |
Netherlands | 3 |
Spain | 2 |
Hawaii | 1 |
Hong Kong | 1 |
Iowa | 1 |
Japan | 1 |
Maryland | 1 |
Norway | 1 |
Oregon | 1 |
Singapore | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Julian F. Lohmann; Steffen Zitzmann; Martin Hecht – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The recently proposed "continuous-time latent curve model with structured residuals" (CT-LCM-SR) addresses several challenges associated with longitudinal data analysis in the behavioral sciences. First, it provides information about process trends and dynamics. Second, using the continuous-time framework, the CT-LCM-SR can handle…
Descriptors: Time Management, Behavioral Science Research, Predictive Validity, Predictor Variables
Nuria Real-Brioso; Eduardo Estrada; Pablo F. Cáncer – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Accelerated longitudinal designs (ALDs) provide an opportunity to capture long developmental periods in a shorter time framework using a relatively small number of assessments. Prior literature has investigated whether univariate developmental processes can be characterized with data obtained from ALDs. However, many important questions in…
Descriptors: Longitudinal Studies, Psychology, Cognitive Development, Brain Hemisphere Functions
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Daniel Seddig – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The latent growth model (LGM) is a popular tool in the social and behavioral sciences to study development processes of continuous and discrete outcome variables. A special case are frequency measurements of behaviors or events, such as doctor visits per month or crimes committed per year. Probability distributions for such outcomes include the…
Descriptors: Growth Models, Statistical Analysis, Structural Equation Models, Crime
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2025
This paper aims to advocate for a balanced approach to model fit evaluation in structural equation modeling (SEM). The ongoing debate surrounding chi-square test statistics and fit indices has been characterized by ambiguity and controversy. Despite the acknowledged limitations of relying solely on the chi-square test, its careful application can…
Descriptors: Monte Carlo Methods, Structural Equation Models, Goodness of Fit, Robustness (Statistics)
Dandan Tang; Steven M. Boker; Xin Tong – Structural Equation Modeling: A Multidisciplinary Journal, 2025
The replication crisis in social and behavioral sciences has raised concerns about the reliability and validity of empirical studies. While research in the literature has explored contributing factors to this crisis, the issues related to analytical tools have received less attention. This study focuses on a widely used analytical tool -…
Descriptors: Test Validity, Factor Analysis, Replication (Evaluation), Social Science Research
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Exploratory structural equation modeling (ESEM) allows for the estimation of all cross-loadings, which leads to the number of parameters estimated substantially greater than that in conventional SEM. This study examined the sensitivity of fit measures (CFI, RMSEA, AIC, BIC, SaBIC, LRT) to measurement noninvariance in ESEM. Results suggested that…
Descriptors: Structural Equation Models, Error of Measurement, Computation, Goodness of Fit
Emma Somer; Carl Falk; Milica Miocevic – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Factor Score Regression (FSR) is increasingly employed as an alternative to structural equation modeling (SEM) in small samples. Despite its popularity in psychology, the performance of FSR in multigroup models with small samples remains relatively unknown. The goal of this study was to examine the performance of FSR, namely Croon's correction and…
Descriptors: Scores, Structural Equation Models, Comparative Analysis, Sample Size
E. Damiano D'Urso; Jesper Tijmstra; Jeroen K. Vermunt; Kim De Roover – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance (MI) is required for validly comparing latent constructs measured by multiple ordinal self-report items. Non-invariances may occur when disregarding (group differences in) an acquiescence response style (ARS; an agreeing tendency regardless of item content). If non-invariance results solely from neglecting ARS, one should…
Descriptors: Error of Measurement, Structural Equation Models, Construct Validity, Measurement Techniques
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Victoria Savalei; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2022
This article provides an overview of different computational options for inference following normal theory maximum likelihood (ML) estimation in structural equation modeling (SEM) with incomplete normal and nonnormal data. Complete data are covered as a special case. These computational options include whether the information matrix is observed or…
Descriptors: Structural Equation Models, Computation, Error of Measurement, Robustness (Statistics)
Manuel T. Rein; Jeroen K. Vermunt; Kim De Roover; Leonie V. D. E. Vogelsmeier – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Researchers often study dynamic processes of latent variables in everyday life, such as the interplay of positive and negative affect over time. An intuitive approach is to first estimate the measurement model of the latent variables, then compute factor scores, and finally use these factor scores as observed scores in vector autoregressive…
Descriptors: Measurement Techniques, Factor Analysis, Scores, Validity
Yuanfang Liu; Mark H. C. Lai; Ben Kelcey – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Measurement invariance holds when a latent construct is measured in the same way across different levels of background variables (continuous or categorical) while controlling for the true value of that construct. Using Monte Carlo simulation, this paper compares the multiple indicators, multiple causes (MIMIC) model and MIMIC-interaction to a…
Descriptors: Classification, Accuracy, Error of Measurement, Correlation
Haiyan Liu; Sarah Depaoli; Lydia Marvin – Structural Equation Modeling: A Multidisciplinary Journal, 2022
The deviance information criterion (DIC) is widely used to select the parsimonious, well-fitting model. We examined how priors impact model complexity (pD) and the DIC for Bayesian CFA. Study 1 compared the empirical distributions of pD and DIC under multivariate (i.e., inverse Wishart) and separation strategy (SS) priors. The former treats the…
Descriptors: Structural Equation Models, Bayesian Statistics, Goodness of Fit, Factor Analysis
Erik-Jan van Kesteren; Daniel L. Oberski – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Structural equation modeling (SEM) is being applied to ever more complex data types and questions, often requiring extensions such as regularization or novel fitting functions. To extend SEM, researchers currently need to completely reformulate SEM and its optimization algorithm -- a challenging and time-consuming task. In this paper, we introduce…
Descriptors: Structural Equation Models, Computation, Graphs, Algorithms