Publication Date
In 2025 | 10 |
Since 2024 | 57 |
Since 2021 (last 5 years) | 66 |
Since 2016 (last 10 years) | 66 |
Since 2006 (last 20 years) | 246 |
Descriptor
Source
Structural Equation Modeling:… | 275 |
Author
Raykov, Tenko | 15 |
Bentler, Peter M. | 9 |
Lee, Sik-Yum | 7 |
Song, Xin-Yuan | 7 |
Bauer, Daniel J. | 5 |
Enders, Craig K. | 5 |
Grimm, Kevin J. | 5 |
Leite, Walter L. | 5 |
Marcoulides, George A. | 5 |
Marsh, Herbert W. | 5 |
Savalei, Victoria | 5 |
More ▼ |
Publication Type
Journal Articles | 275 |
Reports - Research | 141 |
Reports - Descriptive | 75 |
Reports - Evaluative | 58 |
Information Analyses | 2 |
Guides - Non-Classroom | 1 |
Tests/Questionnaires | 1 |
Education Level
Elementary Education | 8 |
Higher Education | 7 |
Postsecondary Education | 5 |
Grade 4 | 4 |
Grade 5 | 4 |
Secondary Education | 4 |
Grade 1 | 3 |
Grade 3 | 3 |
High Schools | 3 |
Preschool Education | 3 |
Early Childhood Education | 2 |
More ▼ |
Audience
Researchers | 7 |
Teachers | 2 |
Location
Germany | 5 |
Netherlands | 3 |
Spain | 2 |
Hawaii | 1 |
Hong Kong | 1 |
Iowa | 1 |
Japan | 1 |
Maryland | 1 |
Norway | 1 |
Oregon | 1 |
Singapore | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Eunsook Kim; Diep Nguyen; Siyu Liu; Yan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Factor mixture modeling (FMM) is generally complex with both unobserved categorical and unobserved continuous variables. We explore the potential of item parceling to reduce the model complexity of FMM and improve convergence and class enumeration accordingly. To this end, we conduct Monte Carlo simulations with three types of data, continuous,…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Monte Carlo Methods
Zachary J. Roman; Patrick Schmidt; Jason M. Miller; Holger Brandt – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Careless and insufficient effort responding (C/IER) is a situation where participants respond to survey instruments without considering the item content. This phenomena adds noise to data leading to erroneous inference. There are multiple approaches to identifying and accounting for C/IER in survey settings, of these approaches the best performing…
Descriptors: Structural Equation Models, Bayesian Statistics, Response Style (Tests), Robustness (Statistics)
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Chi-square tests based on maximum likelihood (ML) estimation of covariance structures often incorrectly over-reject the null hypothesis: [sigma] = [sigma(theta)] when the sample size is small. Reweighted least squares (RLS) avoids this problem. In some models, the vector of parameter must contain means, variances, and covariances, yet whether RLS…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Xiaying Zheng; Ji Seung Yang; Jeffrey R. Harring – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Measuring change in an educational or psychological construct over time is often achieved by repeatedly administering the same items to the same examinees over time and fitting a second-order latent growth curve model. However, latent growth modeling with full information maximum likelihood (FIML) estimation becomes computationally challenging…
Descriptors: Longitudinal Studies, Data Analysis, Item Response Theory, Structural Equation Models
Andrea Hasl; Manuel Voelkle; Charles Driver; Julia Kretschmann; Martin Brunner – Structural Equation Modeling: A Multidisciplinary Journal, 2024
To examine developmental processes, intervention effects, or both, longitudinal studies often aim to include measurement intervals that are equally spaced for all participants. In reality, however, this goal is hardly ever met. Although different approaches have been proposed to deal with this issue, few studies have investigated the potential…
Descriptors: Foreign Countries, Elementary School Students, Secondary School Students, Student Promotion
Rohit Batra; Silvia A. Bunge; Emilio Ferrer – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Studying development processes, as they unfold over time, involves collecting repeated measures from individuals and modeling the changes over time. One methodological challenge in this type of longitudinal data is separating retest effects, due to the repeated assessments, from developmental processes such as maturation or age. In this article,…
Descriptors: Children, Adolescents, Longitudinal Studies, Test Reliability
Smith, Carrie E.; Cribbie, Robert A. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
When structural equation modeling (SEM) analyses are conducted, significance tests for all important model relationships (parameters including factor loadings, covariances, etc.) are typically conducted at a specified nominal Type I error rate ([alpha]). Despite the fact that many significance tests are often conducted in SEM, rarely is…
Descriptors: Structural Equation Models, Error of Measurement, Statistical Analysis, Comparative Analysis
Raykov, Tenko; Marcoulides, George A. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
A latent variable modeling approach is outlined that can be used for meta-analysis of reliability coefficients of multicomponent measuring instruments. Important limitations of efforts to combine composite reliability findings across multiple studies are initially pointed out. A reliability synthesis procedure is discussed that is based on…
Descriptors: Meta Analysis, Reliability, Structural Equation Models, Error of Measurement
Yuan, Ke-Hai; Zhang, Zhiyong – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Yuan and Hayashi (2010) introduced 2 scatter plots for model and data diagnostics in structural equation modeling (SEM). However, the generation of the plots requires in-depth understanding of their underlying technical details. This article develops and introduces an R package semdiag for easily drawing the 2 plots. With a model specified in EQS…
Descriptors: Structural Equation Models, Statistical Analysis, Robustness (Statistics), Computer Software
Heene, Moritz; Hilbert, Sven; Freudenthaler, H. Harald; Buhner, Markus – Structural Equation Modeling: A Multidisciplinary Journal, 2012
This simulation study investigated the sensitivity of commonly used cutoff values for global-model-fit indexes, with regard to different degrees of violations of the assumption of uncorrelated errors in confirmatory factor analysis. It is shown that the global-model-fit indexes fell short in identifying weak to strong model misspecifications under…
Descriptors: Structural Equation Models, Goodness of Fit, Factor Analysis, Correlation
Whittaker, Tiffany A. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Latent means methods such as multiple-indicator multiple-cause (MIMIC) and structured means modeling (SMM) allow researchers to determine whether or not a significant difference exists between groups' factor means. Strong invariance is typically recommended when interpreting latent mean differences. The extent of the impact of noninvariant…
Descriptors: Structural Equation Models, Error of Measurement, Statistical Analysis, Goodness of Fit
Hildreth, Laura A.; Genschel, Ulrike; Lorenz, Frederick O.; Lesser, Virginia M. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Response patterns are of importance to survey researchers because of the insight they provide into the thought processes respondents use to answer survey questions. In this article we propose the use of structural equation modeling to examine response patterns and develop a permutation test to quantify the likelihood of observing a specific…
Descriptors: Questionnaires, Response Style (Tests), Structural Equation Models, Surveys
Cheung, Mike
W.-L. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Structural equation modeling (SEM) is now a generic modeling framework for many multivariate techniques applied in the social and behavioral sciences. Many statistical models can be considered either as special cases of SEM or as part of the latent variable modeling framework. One popular extension is the use of SEM to conduct linear mixed-effects…
Descriptors: Structural Equation Models, Maximum Likelihood Statistics, Guidelines, Multivariate Analysis
Revilla, Melanie; Saris, Willem E. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Saris, Satorra, and Coenders (2004) proposed a new approach to estimate the quality of survey questions, combining the advantages of 2 existing approaches: the multitrait-multimethod (MTMM) and the split-ballot (SB) ones. Implemented in practice, this new approach led to frequent problems of nonconvergence and improper solutions. This article uses…
Descriptors: Multitrait Multimethod Techniques, Surveys, Monte Carlo Methods, Correlation
Jackson, Dennis L.; Voth, Jennifer; Frey, Marc P. – Structural Equation Modeling: A Multidisciplinary Journal, 2013
Determining an appropriate sample size for use in latent variable modeling techniques has presented ongoing challenges to researchers. In particular, small sample sizes are known to present concerns over sampling error for the variances and covariances on which model estimation is based, as well as for fit indexes and convergence failures. The…
Descriptors: Sample Size, Factor Analysis, Measurement, Models