NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Structural Equation Modeling:…275
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 106 to 120 of 275 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Preacher, Kristopher J.; Zhang, Zhen; Zyphur, Michael J. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Multilevel modeling (MLM) is a popular way of assessing mediation effects with clustered data. Two important limitations of this approach have been identified in prior research and a theoretical rationale has been provided for why multilevel structural equation modeling (MSEM) should be preferred. However, to date, no empirical evidence of MSEM's…
Descriptors: Data, Structural Equation Models, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Pek, Jolynn; Losardo, Diane; Bauer, Daniel J. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Compared to parametric models, nonparametric and semiparametric approaches to modeling nonlinearity between latent variables have the advantage of recovering global relationships of unknown functional form. Bauer (2005) proposed an indirect application of finite mixtures of structural equation models where latent components are estimated in the…
Descriptors: Structural Equation Models, Sampling, Statistical Inference, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Cheong, JeeWon – Structural Equation Modeling: A Multidisciplinary Journal, 2011
The latent growth curve modeling (LGCM) approach has been increasingly utilized to investigate longitudinal mediation. However, little is known about the accuracy of the estimates and statistical power when mediation is evaluated in the LGCM framework. A simulation study was conducted to address these issues under various conditions including…
Descriptors: Structural Equation Models, Computation, Statistical Analysis, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Jackman, M. Grace-Anne; Leite, Walter L.; Cochrane, David J. – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This Monte Carlo simulation study investigated methods of forming product indicators for the unconstrained approach for latent variable interaction estimation when the exogenous factors are measured by large and unequal numbers of indicators. Product indicators were created based on multiplying parcels of the larger scale by indicators of the…
Descriptors: Computation, Statistical Data, Structural Equation Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ghisletta, Paolo; McArdle, John J. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
In recent years the use of the latent curve model (LCM) among researchers in social sciences has increased noticeably, probably thanks to contemporary software developments and the availability of specialized literature. Extensions of the LCM, like the the latent change score model (LCSM), have also increased in popularity. At the same time, the R…
Descriptors: Statistical Analysis, Structural Equation Models, Computation, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Siwei; Rovine, Michael J.; Molenaar, Peter C. M. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
This study investigated the performance of fit indexes in selecting a covariance structure for longitudinal data. Data were simulated to follow a compound symmetry, first-order autoregressive, first-order moving average, or random-coefficients covariance structure. We examined the ability of the likelihood ratio test (LRT), root mean square error…
Descriptors: Structural Equation Models, Goodness of Fit, Longitudinal Studies, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Evermann, Joerg – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…
Descriptors: Structural Equation Models, Computer Software, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Raykov, Tenko – Structural Equation Modeling: A Multidisciplinary Journal, 2011
This article is concerned with the question of whether the missing data mechanism routinely referred to as missing completely at random (MCAR) is statistically examinable via a test for lack of distributional differences between groups with observed and missing data, and related consequences. A discussion is initially provided, from a formal logic…
Descriptors: Data Analysis, Statistical Analysis, Probability, Structural Equation Models
Peer reviewed Peer reviewed
Direct linkDirect link
Mayer, Axel; Steyer, Rolf; Mueller, Horst – Structural Equation Modeling: A Multidisciplinary Journal, 2012
We present a 3-step approach to defining latent growth components. In the first step, a measurement model with at least 2 indicators for each time point is formulated to identify measurement error variances and obtain latent variables that are purged from measurement error. In the second step, we use contrast matrices to define the latent growth…
Descriptors: Statistical Analysis, Measurement, Structural Equation Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Geiser, Christian; Eid, Michael; West, Stephen G.; Lischetzke, Tanja; Nussbeck, Fridtjof W. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Multimethod data analysis is a complex procedure that is often used to examine the degree to which different measures of the same construct converge in the assessment of this construct. Several authors have called for a greater understanding of the definition and meaning of method effects in different models for multimethod data. In this article,…
Descriptors: Structural Equation Models, Factor Analysis, Multitrait Multimethod Techniques, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L. – Structural Equation Modeling: A Multidisciplinary Journal, 2012
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
Descriptors: Models, Statistical Analysis, Structural Equation Models, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lin, Guan-Chyun; Wen, Zhonglin; Marsh, Herbert W.; Lin, Huey-Shyan – Structural Equation Modeling: A Multidisciplinary Journal, 2010
The purpose of this investigation is to compare a new (double-mean-centering) strategy to estimating latent interactions in structural equation models with the (single) mean-centering strategy (Marsh, Wen, & Hau, 2004, 2006) and the orthogonalizing strategy (Little, Bovaird, & Widaman, 2006; Marsh et al., 2007). A key benefit of the…
Descriptors: Structural Equation Models, Methods, Interaction, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
MacCallum, Robert; Lee, Taehun; Browne, Michael W. – Structural Equation Modeling: A Multidisciplinary Journal, 2010
Two general frameworks have been proposed for evaluating statistical power of tests of model fit in structural equation modeling (SEM). Under the Satorra-Saris (1985) approach, to evaluate the power of the test of fit of Model A, a Model B, within which A is nested, is specified as the alternative hypothesis and considered as the true model. We…
Descriptors: Structural Equation Models, Statistical Analysis, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Finch, W. Holmes; Bronk, Kendall Cotton – Structural Equation Modeling: A Multidisciplinary Journal, 2011
Latent class analysis (LCA) is an increasingly popular tool that researchers can use to identify latent groups in the population underlying a sample of responses to categorical observed variables. LCA is most commonly used in an exploratory fashion whereby no parameters are specified a priori. Although this exploratory approach is reasonable when…
Descriptors: Structural Equation Models, Computer Software, Programming, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Van Horn, M. Lee; Smith, Jessalyn; Fagan, Abigail A.; Jaki, Thomas; Feaster, Daniel J.; Masyn, Katherine; Hawkins, J. David; Howe, George – Structural Equation Modeling: A Multidisciplinary Journal, 2012
Regression mixture models, which have only recently begun to be used in applied research, are a new approach for finding differential effects. This approach comes at the cost of the assumption that error terms are normally distributed within classes. This study uses Monte Carlo simulations to explore the effects of relatively minor violations of…
Descriptors: Structural Equation Models, Home Management, Drug Abuse, Research Methodology
Pages: 1  |  ...  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  12  |  ...  |  19