NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Structural Equation Modeling2
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
Wang, Lin; And Others – Structural Equation Modeling, 1996
Actual kurtotic and skewed data and varied sample sizes and estimation methods demonstrated that normal theory maximum likelihood and generalized least square estimators were fairly consistent and almost identical. Standard errors tended to underestimate the estimator's true variation but the problem was not serious for large samples. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Goodness of Fit, Least Squares Statistics
Peer reviewed Peer reviewed
McQuitty, Shaun – Structural Equation Modeling, 1997
LISREL 8 invokes a ridge option when maximum likelihood or generalized least squares are used to estimate a structural equation model with a nonpositive definite covariance or correlation matrix. Implications of the ridge option for model fit, parameter estimates, and standard errors are explored through two examples. (SLD)
Descriptors: Error of Measurement, Estimation (Mathematics), Goodness of Fit, Least Squares Statistics