NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Bunting, Brendan P.; Adamson, Gary; Mulhall, Peter K. – Structural Equation Modeling, 2002
Studied planned incomplete data designs for the purpose of substantially reducing the amount of data required for multitrait-multimethod models. Simulations studied the effectiveness of Listwise Deletion, Pairwise Deletion, and the expectation maximization (EM) algorithm. Results indicate that EM is generally precise and efficient. (SLD)
Descriptors: Monte Carlo Methods, Multitrait Multimethod Techniques, Simulation
Peer reviewed Peer reviewed
Julian, Marc W. – Structural Equation Modeling, 2001
Examined the effects of ignoring multilevel data structures in nonhierarchical covariance modeling using a Monte Carlo simulation. Results suggest that when the magnitudes of intraclass correlations are less than 0.05 and the group size is small, the consequences of ignoring the data dependence within the multilevel data structures seem to be…
Descriptors: Correlation, Monte Carlo Methods, Sample Size, Simulation
Peer reviewed Peer reviewed
Paxton, Pamela; Curran, Patrick J.; Bollen, Kenneth A.; Kirby, Jim; Chen, Feinian – Structural Equation Modeling, 2001
Illustrates the design and planning of Monte Carlo simulations, presenting nine steps in planning and performing a Monte Carlo analysis from developing a theoretically derived question of interest through summarizing the results. Uses a Monte Carlo simulation to illustrate many of the relevant points. (SLD)
Descriptors: Monte Carlo Methods, Research Design, Simulation, Statistical Analysis
Peer reviewed Peer reviewed
Bacon, Donald R. – Structural Equation Modeling, 2001
Evaluated the performance of several alternative cluster analytic approaches to initial model specification using population parameter analyses and a Monte Carlo simulation. Of the six cluster approaches evaluated, the one using the correlations of item correlations as a proximity metric and average linking as a clustering algorithm performed the…
Descriptors: Algorithms, Cluster Analysis, Correlation, Mathematical Models
Peer reviewed Peer reviewed
Enders, Craig K.; Bandalos, Deborah L. – Structural Equation Modeling, 2001
Used Monte Carlo simulation to examine the performance of four missing data methods in structural equation models: (1)full information maximum likelihood (FIML); (2) listwise deletion; (3) pairwise deletion; and (4) similar response pattern imputation. Results show that FIML estimation is superior across all conditions of the design. (SLD)
Descriptors: Maximum Likelihood Statistics, Monte Carlo Methods, Simulation, Structural Equation Models
Peer reviewed Peer reviewed
Olmos, Antonio; Hutchinson, Susan R. – Structural Equation Modeling, 1998
The behavior of eight measures of fit used to evaluate confirmatory factor analysis models was studied through Monte Carlo simulation to determine the extent to which sample size, model size, estimation procedure, and level of nonnormality affect fit when analyzing polytomous data. Implications of results for evaluating fit are discussed. (SLD)
Descriptors: Estimation (Mathematics), Goodness of Fit, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Song, Xin-Yuan; Lee, Sik-Yum; Zhu, Hong-Tu – Structural Equation Modeling, 2001
Studied the maximum likelihood estimation of unknown parameters in a general LISREL-type model with mixed polytomous and continuous data through Monte Carlo simulation. Proposes a model selection procedure for obtaining good models for the underlying substantive theory and discusses the effectiveness of the proposed model. (SLD)
Descriptors: Maximum Likelihood Statistics, Monte Carlo Methods, Selection, Simulation
Peer reviewed Peer reviewed
Fan, Xitao; Wang, Lin; Thompson, Bruce – Structural Equation Modeling, 1999
A Monte Carlo simulation study investigated the effects on 10 structural equation modeling fit indexes of sample size, estimation method, and model specification. Some fit indexes did not appear to be comparable, and it was apparent that estimation method strongly influenced almost all fit indexes examined, especially for misspecified models. (SLD)
Descriptors: Estimation (Mathematics), Goodness of Fit, Monte Carlo Methods, Sample Size
Peer reviewed Peer reviewed
Fouladi, Rachel T. – Structural Equation Modeling, 2000
Provides an overview of standard and modified normal theory and asymptotically distribution-free covariance and correlation structure analysis techniques and details Monte Carlo simulation results on Type I and Type II error control. Demonstrates through the simulation that robustness and nonrobustness of structure analysis techniques vary as a…
Descriptors: Analysis of Covariance, Correlation, Monte Carlo Methods, Multivariate Analysis