NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Fauber, Daphne; Becker-Blau, Renee – Technology and Engineering Teacher, 2020
Informal STEM education experiences can be invaluable to students as a means of developing their future career goals and career interests. Extracurricular programs in the form of clubs, competitions, teams, and activities provide a platform for these informal education experiences. There are many STEM-focused extracurricular options for students,…
Descriptors: STEM Education, Robotics, Informal Education, Extracurricular Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Jackson, Andrew; Mentzer, Nathan; Kramer-Bottiglio, Rebecca – Technology and Engineering Teacher, 2020
In the field of technology and engineering education, educators are limited by their inability to predict what is coming; as the saying goes, they are preparing their students for jobs that do not even exist yet. Two adaptive approaches can help prepare students for this uncertainty: (1) teaching broad skills that can be applied in new situations;…
Descriptors: Robotics, 21st Century Skills, Technology Education, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Fisher, Karin – Technology and Engineering Teacher, 2019
According to the new federal spending bill signed into law in March 2018, funding is being provided for education programs and initiatives in the Every Student Succeeds Act (ESSA). Many provisions allow for funding to support science, technology, engineering, and mathematics (STEM) education that includes diverse learners in activities such as…
Descriptors: Robotics, STEM Education, Elementary Secondary Education, Educational Legislation
Peer reviewed Peer reviewed
Direct linkDirect link
Deal, Walter F., III; Hsiung, Steve C. – Technology and Engineering Teacher, 2017
Sensors of all kinds play significant roles in the way that we use and interact with technological devices today. Smartphones, household appliances, automobiles, and other products that we use every day incorporate many different kinds of sensors. While the sensors are hidden from view in the products, appliances, and tools that we use, they…
Descriptors: Engineering Education, Engineering Technology, Robotics, Electronic Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Roman, Harry T. – Technology and Engineering Teacher, 2014
Biomedical and robotic technologies are merging to present a wonderful opportunity to develop artificial limbs and prosthetic devices for humans injured on the job, in the military, or due to disease. In this challenge, students will have the opportunity to design a store or online service that specifically dedicates itself to amputees. Described…
Descriptors: Engineering Education, Robotics, Biomedicine, Online Vendors
Peer reviewed Peer reviewed
Direct linkDirect link
Roman, Harry T. – Technology and Engineering Teacher, 2014
Roadways are literally soaked with petrochemical byproducts, oils, gasoline, and other volatile substances that eventually run off into sewers and end up in rivers, waterways, and other undesirable places. Can the roads be cleaned of these wastes, with their proper disposal? Can vehicles, robots, or other devices be designed that could be driven…
Descriptors: Sanitation, Wastes, Fuels, Motor Vehicles
Peer reviewed Peer reviewed
Direct linkDirect link
Bianco, Andrew S. – Technology and Engineering Teacher, 2014
All technology educators have favorite lessons and projects that they most desire to teach. Many teachers might ask why teach robotics when there are many other concepts to cover with the students? The answer to this question is to engage students in science, technology, engineering, and math (commonly referred to as STEM) concepts. In order for…
Descriptors: Robotics, Class Activities, Classroom Techniques, Technology Education
Peer reviewed Peer reviewed
Direct linkDirect link
Loveland, Thomas – Technology and Engineering Teacher, 2012
In modern CAD and CAM manufacturing companies, engineers design parts for machines and consumable goods. Many of these parts are cut on CNC machines. Whether using a CNC lathe, milling machine, or router, the ideas and designs of engineers must be translated into a machine-readable form called G & M Code that can be used to cut parts to precise…
Descriptors: Computer Assisted Design, National Standards, Manufacturing, Skilled Workers