Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 14 |
Descriptor
Source
Technology and Engineering… | 14 |
Author
Grubbs, Michael E. | 3 |
Becker, Kurt | 1 |
Bianco, Andrew S. | 1 |
Cerv, Sara | 1 |
Cool, Nate | 1 |
Corkins, Chelsea | 1 |
Croly, Michael | 1 |
Deck, Anita | 1 |
Del Guercio, Ryan | 1 |
Ernst, Jeremy | 1 |
Flowers, Jim | 1 |
More ▼ |
Publication Type
Journal Articles | 14 |
Reports - Descriptive | 12 |
Guides - Classroom - Teacher | 4 |
Reports - Research | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Secondary Education | 7 |
Junior High Schools | 4 |
Middle Schools | 4 |
Higher Education | 2 |
Postsecondary Education | 2 |
High Schools | 1 |
Audience
Teachers | 6 |
Location
New Jersey | 1 |
Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
What Works Clearinghouse Rating
Corkins, Chelsea; Cerv, Sara – Technology and Engineering Teacher, 2019
While some might argue that lessons such as this cater towards nonformal education, teachers should not be deterred from integrating these lessons into their formal classrooms. Nonformal lesson plans--including their structures and techniques--can and should be integrated into formal classroom settings. Many nonformal activities are easy to…
Descriptors: Nonformal Education, Engineering Education, Teaching Methods, Lesson Plans
Moye, Johnny J. – Technology and Engineering Teacher, 2019
Today's world is shaped by technology and products engineered to serve society's needs and wants. The knowledge and skills required to develop and use these products are changing at an exponential rate (NASE&M, 2017; NRC, 2011). In order to understand and meet future challenges, it is vital that the United States produce technology- and…
Descriptors: Technology Education, Engineering Education, STEM Education, Problem Solving
Cool, Nate; Strimel, Greg J.; Croly, Michael; Grubbs, Michael E. – Technology and Engineering Teacher, 2017
To be technologically and engineering literate, people should be able to "make" or produce quality solutions to engineering design challenges while recognizing and understanding how to avoid hazards in a broad array of situations when properly using tools, machines, and materials (Haynie, 2009; Gunter, 2007; ITEA/ITEEA, 2000/2002/2007).…
Descriptors: Engineering Education, Engineering Technology, Integrated Curriculum, Design
Prasa, Anthony R., Jr.; Del Guercio, Ryan – Technology and Engineering Teacher, 2016
Engineers are faced with solving important problems every day and must follow a step-by-step design process to arrive at solutions. Students who are taught an effective design process to apply to engineering projects begin to see problems as an engineer would, consider all ideas, and arrive at the best solution. Using an effective design process…
Descriptors: Engineering Education, Engineering, Secondary School Science, High School Students
Kekelis, Linda; Larkin, Molly; Gomes, Lyn – Technology and Engineering Teacher, 2014
This article describes a reverse-engineering project where female students take a part a hair dryer--giving them an opportunity to see the many different kinds of engineering disciplines involved in making a hairdryer and that they work together. Mechanical Engineer, Lyn Gome, describes her experience leading a group of middle school girls through…
Descriptors: Role Models, Females, Engineering, Career Choice
Merrill, Chris – Technology and Engineering Teacher, 2013
At a presentation from the Maley "Spirit of Excellence" Breakfast in Columbus, OH, March 2013, the author shares comments about craftsmanship and leadership as they relate to technology and engineering education. Students need more experience getting their hands dirty troubleshooting, researching and developing, inventing and innovating,…
Descriptors: Leadership, Troubleshooting, Engineering Education, Design
Orr, Taylor; Flowers, Jim – Technology and Engineering Teacher, 2014
The goal of formal education is student learning. By emphasizing experimentation in the classroom or lab, students learn about the results of a particular inquiry. But more importantly, they learn to refine their approach to learning by creating new knowledge rather than merely remembering what they have been told. An inquiry approach where…
Descriptors: Active Learning, Inquiry, Science Experiments, Scientific Methodology
Deck, Anita; Grubbs, Michael E. – Technology and Engineering Teacher, 2016
It is becoming increasingly important to consider the waste humans produce and options for reducing the impact it has on the environment. Allowing students the opportunities to research potential solutions and present their ideas results in an educated citizenry that considers consequences of technological advances. Throughout the course of a…
Descriptors: Environmental Education, STEM Education, Engineering Education, Design
Mitts, Charles – Technology and Engineering Teacher, 2013
The kite design activity described in this article is "hands-on" and provides students the opportunity to learn and apply STEM concepts in the process of building and flying a traditional diamond-shaped bowed kite from scratch. Important components of the activity are that students read and follow instructions and lessons about the…
Descriptors: Hands on Science, Design, Science Activities, Scientific Concepts
Roman, Harry T. – Technology and Engineering Teacher, 2013
This article invites teachers to let their students' imaginations soar as they become part of a team that will design a whole new kind of living technological museum, a facility that celebrates the world of infrastructure. In this activity, a new two-story building will be built, occupying a vacant corner parcel of land, approximately 150…
Descriptors: Museums, Imagination, Building Design, Structural Elements (Construction)
Bianco, Andrew S. – Technology and Engineering Teacher, 2014
All technology educators have favorite lessons and projects that they most desire to teach. Many teachers might ask why teach robotics when there are many other concepts to cover with the students? The answer to this question is to engage students in science, technology, engineering, and math (commonly referred to as STEM) concepts. In order for…
Descriptors: Robotics, Class Activities, Classroom Techniques, Technology Education
Song, Ting; Becker, Kurt – Technology and Engineering Teacher, 2013
Science, technology, engineering, and mathematics (STEM) educators are facing the challenge of attracting more students. The disparity between the need for engineers and the enrollment of engineering students is growing (Genalo, Bruning, & Adams, 2000), and career aspirations of high school students are inconsistent with the employment…
Descriptors: Engineering Education, Engineering Technology, Design, Middle School Students
Sutton, Kevin; Grubbs, Michael E.; Ernst, Jeremy – Technology and Engineering Teacher, 2014
Engineering design has been suggested as a viable instructional approach for Technology Education (TE) to intentionally provide students the opportunity to apply multidisciplinary concepts to solve ill-defined design challenges (Wells & Ernst, 2012; Sanders & Wells, 2010; Wicklein, 2006). Currently, the context for design challenges in TE…
Descriptors: Design, Design Crafts, Design Requirements, Engineering Technology
Mitts, Charles R. – Technology and Engineering Teacher, 2013
This design/problem-solving activity challenges students to design a replacement bridge for one that has been designated as either structurally deficient or functionally obsolete. The Aycock MS Technology/STEM Magnet Program Virtual Bridge Design Challenge is an authentic introduction to the engineering design process. It is a socially relevant…
Descriptors: Problem Solving, Facility Planning, Design, Engineering Education