NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
van der Linden, Wim J.; Glas, Cees A. W. – Applied Measurement in Education, 2000
Performed a simulation study to demonstrate the dramatic impact of capitalization on estimation errors on ability estimation in adaptive testing. Discusses four different strategies to minimize the likelihood of capitalization in computerized adaptive testing. (SLD)
Descriptors: Ability, Adaptive Testing, Computer Assisted Testing, Estimation (Mathematics)
Peer reviewed Peer reviewed
Fox, Jean-Paul; Glas, Cees A. W. – Psychometrika, 2001
Imposed a two-level regression model on the ability parameters in an item response theory (IRT) model. Uses a simulation study and an empirical data set to show that the parameters of the two-parameter normal ogive model and the multilevel model can be estimated in a Bayesian framework using Gibbs sampling. (SLD)
Descriptors: Ability, Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics)
Beguin, Anton A.; Glas, Cees A. W. – 1998
A Bayesian procedure to estimate the three-parameter normal ogive model and a generalization to a model with multidimensional ability parameters are discussed. The procedure is a generalization of a procedure by J. Albert (1992) for estimating the two-parameter normal ogive model. The procedure will support multiple samples from multiple…
Descriptors: Ability, Bayesian Statistics, Estimation (Mathematics), Item Response Theory
van der Linden, Wim J.; Glas, Cees A. W. – 1998
In adaptive testing, item selection is sequentially optimized during the test. Since the optimization takes place over a pool of items calibrated with estimation error, capitalization on these errors is likely to occur. How serious the consequences of this phenomenon are depends not only on the distribution of the estimation errors in the pool or…
Descriptors: Ability, Adaptive Testing, Computer Assisted Testing, Error of Measurement
Fox, Jean-Paul; Glas, Cees A. W. – 1998
A two-level regression model is imposed on the ability parameters in an item response theory (IRT) model. The advantage of using latent rather than observed scores as dependent variables of a multilevel model is that this offers the possibility of separating the influence of item difficulty and ability level and modeling response variation and…
Descriptors: Ability, Bayesian Statistics, Difficulty Level, Error of Measurement