NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lucia Uguina-Gadella; Iria Estevez-Ayres; Jesus Arias Fisteus; Carlos Alario-Hoyos; Carlos Delgado Kloos – IEEE Transactions on Learning Technologies, 2024
Students learn not only directly from their teachers and books, but also by using their computers, tablets, and phones. Monitoring these learning environments creates new opportunities for teachers to track students' progress. In particular, this article is based on gathering real-time events as students interact with learning tools and materials…
Descriptors: Predictor Variables, Academic Achievement, Computer Assisted Instruction, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Rianne; Snijders, Chris; Kleingeld, Ad; Matzat, Uwe – IEEE Transactions on Learning Technologies, 2017
With the adoption of Learning Management Systems (LMSs) in educational institutions, a lot of data has become available describing students' online behavior. Many researchers have used these data to predict student performance. This has led to a rather diverse set of findings, possibly related to the diversity in courses and predictor variables…
Descriptors: Blended Learning, Predictor Variables, Predictive Validity, Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Pardo, Abelardo; Han, Feifei; Ellis, Robert A. – IEEE Transactions on Learning Technologies, 2017
Self-regulated learning theories are used to understand the reasons for different levels of university student academic performance. Similarly, learning analytics research proposes the combination of detailed data traces derived from technology-mediated tasks with a variety of algorithms to predict student academic performance. The former approach…
Descriptors: Student Centered Learning, Learning Theories, College Students, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Tempelaar, Dirk T.; Rienties, Bart; Nguyen, Quan – IEEE Transactions on Learning Technologies, 2017
Studies in the field of learning analytics (LA) have shown students' demographics and learning management system (LMS) data to be effective identifiers of "at risk" performance. However, insights generated by these predictive models may not be suitable for pedagogically informed interventions due to the inability to explain why students…
Descriptors: Student Behavior, Integrated Learning Systems, Personality, Educational Research