NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Graduate Record Examinations1
What Works Clearinghouse Rating
Showing 1 to 15 of 34 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Al-Alawi, Lamees; Al Shaqsi, Jamil; Tarhini, Ali; Al-Busaidi, Adil S. – Education and Information Technologies, 2023
This study aims to employ the supervised machine learning algorithms to examine factors that negatively impacted academic performance among college students on probation (underperforming students). We used the Knowledge Discovery in Databases (KDD) methodology on a sample of N = 6514 college students spanning 11 years (from 2009 to 2019) provided…
Descriptors: Artificial Intelligence, Predictor Variables, Academic Achievement, Grade Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Seda Göktepe Körpeoglu; Sevda Göktepe Yildiz – International Journal of Science Education, 2024
Numerous artificial intelligence methods have lately been applied in education. This study proposes an Adaptive Neural-network-based Fuzzy Logic (ANFIS) model combining fuzzy logic and artificial neural networks for predicting students' STEM attitudes. The inputs of the research were determined as grade levels and academic achievement scores, and…
Descriptors: Foreign Countries, Middle School Students, STEM Education, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Kheira Ouassif; Benameur Ziani – Education and Information Technologies, 2025
The integration of educational data mining and deep neural networks, along with the adoption of the Apriori algorithm for generating association rules, focuses to resolve the problem of misdirection of students in the university, leading to their failure and dropout. This is reached through the development of an intelligent model that predicts the…
Descriptors: Predictor Variables, College Students, Majors (Students), Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Juliana Ego Azonuche; Juliet Obiageli Okoruwa; Comfort Ukrajit Sonye; Gbenga Samuel Oladosu – International Journal of Learning and Change, 2024
The performance history of 277 students in clothing and textile from two tertiary institutions in southern Nigeria was studied by artificial neural networks (ANN) and analysis of variance (ANOVA) in terms of institution, gender, ordinary level (O-level) qualification, marital status, and age. The study was guided by five research questions and…
Descriptors: Foreign Countries, Higher Education, Textiles Instruction, Clothing
Peer reviewed Peer reviewed
Direct linkDirect link
Zheng, Lanqin; Niu, Jiayu; Zhong, Lu; Gyasi, Juliana Fosua – Interactive Learning Environments, 2023
Recently, artificial intelligence (AI) technologies have been widely used in the field of education, and artificial intelligence in education (AIEd) has gained increasing attention. However, no quantitative meta-analysis has been conducted on the overall effectiveness of AI on learning achievement and learning perception. To close this research…
Descriptors: Instructional Effectiveness, Artificial Intelligence, Academic Achievement, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Andrea Zanellati; Stefano Pio Zingaro; Maurizio Gabbrielli – IEEE Transactions on Learning Technologies, 2024
Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an…
Descriptors: Dropouts, Dropout Characteristics, Potential Dropouts, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Nayak, Padmalaya; Vaheed, Sk.; Gupta, Surbhi; Mohan, Neeraj – Education and Information Technologies, 2023
Students' academic performance prediction is one of the most important applications of Educational Data Mining (EDM) that helps to improve the quality of the education process. The attainment of student outcomes in an Outcome-based Education (OBE) system adds invaluable rewards to facilitate corrective measures to the learning processes.…
Descriptors: Predictor Variables, Academic Achievement, Data Collection, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Liang Zhang; Jionghao Lin; John Sabatini; Conrad Borchers; Daniel Weitekamp; Meng Cao; John Hollander; Xiangen Hu; Arthur C. Graesser – IEEE Transactions on Learning Technologies, 2025
Learning performance data, such as correct or incorrect answers and problem-solving attempts in intelligent tutoring systems (ITSs), facilitate the assessment of knowledge mastery and the delivery of effective instructions. However, these data tend to be highly sparse (80%90% missing observations) in most real-world applications. This data…
Descriptors: Artificial Intelligence, Academic Achievement, Data, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schmucker, Robin; Wang, Jingbo; Hu, Shijia; Mitchell, Tom M. – Journal of Educational Data Mining, 2022
We consider the problem of assessing the changing performance levels of individual students as they go through online courses. This student performance modeling problem is a critical step for building adaptive online teaching systems. Specifically, we conduct a study of how to utilize various types and large amounts of log data from earlier…
Descriptors: Academic Achievement, Electronic Learning, Artificial Intelligence, Predictor Variables
Caesar Jude Clemente – ProQuest LLC, 2023
Having a job immediately after graduation is the dream of every IT graduate. However, not everyone can achieve this outcome. The study's primary goal is to develop predictive models to forecast IT graduates' chances of finding a job based on factors such as academic performance, socioeconomic status, academic habits, and demographic data.…
Descriptors: Artificial Intelligence, Prediction, Models, Information Technology
Peer reviewed Peer reviewed
Direct linkDirect link
So, Joseph Chi-Ho; Ho, Yik Him; Wong, Adam Ka-Lok; Chan, Henry C. B.; Tsang, Kia Ho-Yin; Chan, Ada Pui-Ling; Wong, Simon Chi-Wang – IEEE Transactions on Learning Technologies, 2023
Generic competence (GC) development is an integral part of higher education to provide holistic education and enhance student career development. It also plays a critical role in complementing the curriculum. Many tertiary institutions provide various GC development activities (GCDA). Moreover, institutions strongly need to further understand…
Descriptors: Predictor Variables, Higher Education, Online Courses, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Aom Perkash; Qaisar Shaheen; Robina Saleem; Furqan Rustam; Monica Gracia Villar; Eduardo Silva Alvarado; Isabel de la Torre Diez; Imran Ashraf – Education and Information Technologies, 2024
Developing tools to support students, educators, intuitions, and government in the educational environment has become an important task to improve the quality of education and learning outcomes. Information and communication technology (ICT) is adopted by educational institutions; one such instance is video interaction in flipped teaching.…
Descriptors: Academic Achievement, Colleges, Artificial Intelligence, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Tsiakmaki, Maria; Kostopoulos, Georgios; Kotsiantis, Sotiris; Ragos, Omiros – Journal of Computing in Higher Education, 2021
Predicting students' learning outcomes is one of the main topics of interest in the area of Educational Data Mining and Learning Analytics. To this end, a plethora of machine learning methods has been successfully applied for solving a variety of predictive problems. However, it is of utmost importance for both educators and data scientists to…
Descriptors: Active Learning, Predictor Variables, Academic Achievement, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Asselman, Amal; Khaldi, Mohamed; Aammou, Souhaib – Education and Information Technologies, 2020
Recently, tracking student behavior has become a very important phase for constructing adaptive educational systems. Several researchers have developed various methods based on machine learning for better tracing students' knowledge. Most of these methods have shown an effective estimation of student features and an accurate prediction of future…
Descriptors: Scaffolding (Teaching Technique), Predictor Variables, Student Behavior, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wang, Yuancheng; Luo, Nanyu; Zhou, Jianjun – International Educational Data Mining Society, 2022
Doing assignments is a very important part of learning. Students' assignment submission time provides valuable information on study attitudes and habits which strongly correlate with academic performance. However, the number of assignments and their submission deadlines vary among university courses, making it hard to use assignment submission…
Descriptors: College Students, Assignments, Time, Scheduling
Previous Page | Next Page »
Pages: 1  |  2  |  3