NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20013
Lau v Nichols1
What Works Clearinghouse Rating
Showing 1 to 15 of 82 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Caihong Feng; Jingyu Liu; Jianhua Wang; Yunhong Ding; Weidong Ji – Education and Information Technologies, 2025
Student academic performance prediction is a significant area of study in the realm of education that has drawn the interest and investigation of numerous scholars. The current approaches for student academic performance prediction mainly rely on the educational information provided by educational system, ignoring the information on students'…
Descriptors: Academic Achievement, Prediction, Models, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Meriem Zerkouk; Miloud Mihoubi; Belkacem Chikhaoui; Shengrui Wang – Education and Information Technologies, 2024
School dropout is a significant issue in distance learning, and early detection is crucial for addressing the problem. Our study aims to create a binary classification model that anticipates students' activity levels based on their current achievements and engagement on a Canadian Distance learning Platform. Predicting student dropout, a common…
Descriptors: Artificial Intelligence, Dropouts, Prediction, Distance Education
Adam J. Reeger – ProQuest LLC, 2022
Student growth percentiles (SGPs) have become a common means to measure and report on student academic growth for state education accountability, and some states have adopted SGP cutscores as a means of classifying student growth into categories like "high/medium/low" growth. It has therefore become important to understand properties of…
Descriptors: Academic Achievement, Achievement Gains, Accountability, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Cem Recai Çirak; Hakan Akilli; Yeliz Ekinci – Higher Education Quarterly, 2024
In this study, an early warning system predicting first-year undergraduate student academic performance is developed for higher education institutions. The significant factors that affect first-year student success are derived and discussed such that they can be used for policy developments by related bodies. The dataset used in experimental…
Descriptors: Program Development, At Risk Students, Identification, College Freshmen
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Soyeon; Kim, Hankyul; Park, Eun Hye; Kim, Boram; Lee, Sang Min; Kim, Boyoung – Psychology in the Schools, 2021
Fourteen empirical studies on academic burnout were synthesized and reviewed with a meta-analytic approach based on the framework of job demand, control, support model. It was found that demand, control, and support were associated with academic burnout. The three dimensions of burnout were negatively related to demand and positively related to…
Descriptors: Burnout, Meta Analysis, Student Attitudes, Academic Achievement
Yanagiura, Takeshi – Community College Research Center, Teachers College, Columbia University, 2020
Among community college leaders and others interested in reforms to improve student success, there is growing interest in adopting machine learning (ML) techniques to predict credential completion. However, ML algorithms are often complex and are not readily accessible to practitioners for whom a simpler set of near-term measures may serve as…
Descriptors: Community Colleges, Man Machine Systems, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sha, Lele; Rakovic, Mladen; Li, Yuheng; Whitelock-Wainwright, Alexander; Carroll, David; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2021
Classifying educational forum posts is a longstanding task in the research of Learning Analytics and Educational Data Mining. Though this task has been tackled by applying both traditional Machine Learning (ML) approaches (e.g., Logistics Regression and Random Forest) and up-to-date Deep Learning (DL) approaches, there lacks a systematic…
Descriptors: Classification, Computer Mediated Communication, Learning Analytics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Jimenez, Fernando; Paoletti, Alessia; Sanchez, Gracia; Sciavicco, Guido – IEEE Transactions on Learning Technologies, 2019
In the European academic systems, the public funding to single universities depends on many factors, which are periodically evaluated. One of such factors is the rate of success, that is, the rate of students that do complete their course of study. At many levels, therefore, there is an increasing interest in being able to predict the risk that a…
Descriptors: Prediction, Risk, Dropouts, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Nahar, Khaledun; Shova, Boishakhe Islam; Ria, Tahmina; Rashid, Humayara Binte; Islam, A. H. M. Saiful – Education and Information Technologies, 2021
Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various aspects. In this paper, we have analyzed the…
Descriptors: Learning Analytics, College Students, Engineering Education, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Yanagiura, Takeshi – Community College Review, 2023
Objective: This study examines how accurately a small set of short-term academic indicators can approximate long-term outcomes of community college students so that decision-makers can take informed actions based on those indicators to evaluate the current progress of large-scale reform efforts on long-term outcomes, which in practice will not be…
Descriptors: Community Colleges, Community College Students, Educational Indicators, Outcomes of Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Toprak, Emre; Gelbal, Selahattin – International Journal of Assessment Tools in Education, 2020
This study aims to compare the performances of the artificial neural network, decision trees and discriminant analysis methods to classify student achievement. The study uses multilayer perceptron model to form the artificial neural network model, chi-square automatic interaction detection (CHAID) algorithm to apply the decision trees method and…
Descriptors: Comparative Analysis, Classification, Artificial Intelligence, Networks
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6