Publication Date
In 2025 | 3 |
Since 2024 | 14 |
Since 2021 (last 5 years) | 42 |
Since 2016 (last 10 years) | 83 |
Since 2006 (last 20 years) | 135 |
Descriptor
Academic Achievement | 168 |
Prediction | 168 |
Data Analysis | 90 |
Models | 50 |
College Students | 40 |
Foreign Countries | 39 |
Data Collection | 37 |
At Risk Students | 32 |
Artificial Intelligence | 30 |
Student Characteristics | 26 |
Tables (Data) | 26 |
More ▼ |
Source
Author
Publication Type
Education Level
Audience
Practitioners | 4 |
Administrators | 2 |
Researchers | 2 |
Location
Florida | 9 |
Indiana | 7 |
Turkey | 6 |
Australia | 5 |
California | 5 |
Germany | 4 |
Texas | 4 |
United Kingdom | 4 |
Arizona | 3 |
Brazil | 3 |
China | 3 |
More ▼ |
Laws, Policies, & Programs
Elementary and Secondary… | 4 |
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Majdi Beseiso – TechTrends: Linking Research and Practice to Improve Learning, 2025
Predicting students' success is crucial in educational settings to improve academic performance and prevent dropouts. This study aimed to improve student performance prediction by combining advanced machine learning (ML) approaches. Convolutional Neural Networks (CNNs) and attention mechanisms were used for extracting relevant features from…
Descriptors: Prediction, Success, Academic Achievement, Artificial Intelligence
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Batool, Saba; Rashid, Junaid; Nisar, Muhammad Wasif; Kim, Jungeun; Kwon, Hyuk-Yoon; Hussain, Amir – Education and Information Technologies, 2023
Educational data mining is an emerging interdisciplinary research area involving both education and informatics. It has become an imperative research area due to many advantages that educational institutions can achieve. Along these lines, various data mining techniques have been used to improve learning outcomes by exploring large-scale data that…
Descriptors: Academic Achievement, Prediction, Data Use, Information Retrieval
Yu-Jie Wang; Chang-Lei Gao; Xin-Dong Ye – Education and Information Technologies, 2024
The continuous development of Educational Data Mining (EDM) and Learning Analytics (LA) technologies has provided more effective technical support for accurate early warning and interventions for student academic performance. However, the existing body of research on EDM and LA needs more empirical studies that provide feedback interventions, and…
Descriptors: Precision Teaching, Data Use, Intervention, Educational Improvement
Umer, Rahila; Susnjak, Teo; Mathrani, Anuradha; Suriadi, Lim – Interactive Learning Environments, 2023
Predictive models on students' academic performance can be built by using historical data for modelling students' learning behaviour. Such models can be employed in educational settings to determine how new students will perform and in predicting whether these students should be classed as at-risk of failing a course. Stakeholders can use…
Descriptors: Prediction, Student Behavior, Models, Academic Achievement
Shoaib, Muhammad; Sayed, Nasir; Amara, Nedra; Latif, Abdul; Azam, Sikandar; Muhammad, Sajjad – Education and Information Technologies, 2022
Technology and data analysis have evolved into a resource-rich tool for collecting, researching and comparing student achievement levels in the classroom. There are sufficient resources to discover student success through data analysis by routinely collecting extensive data on student behaviour and curriculum structure. Educational Data Mining…
Descriptors: Prediction, Artificial Intelligence, Student Behavior, Academic Achievement
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Erik Eliassen; Ragnhild Eek Brandlistuen; Mari Vaage Wang – European Early Childhood Education Research Journal, 2024
Many studies have linked quality in early childhood education and care [ECEC] to school performance, but the mechanisms of how ECEC process quality affects children in ways that lead to improved school performance is unclear. In this study on 7431 children in Norway, we test the hypothesis that the relation between process quality in ECEC and…
Descriptors: Early Childhood Education, Academic Achievement, Foreign Countries, Interpersonal Competence
M. Nazir; A. Noraziah; M. Rahmah – International Journal of Virtual and Personal Learning Environments, 2023
An effective educational program warrants the inclusion of an innovative construction that enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational decision support system has currently been a hot topic in educational systems, facilitating the pupil…
Descriptors: Data Analysis, Academic Achievement, Artificial Intelligence, Prediction
Alturki, Sarah; Cohausz, Lea; Stuckenschmidt, Heiner – Smart Learning Environments, 2022
The tremendous growth in electronic educational data creates the need to have meaningful information extracted from it. Educational Data Mining (EDM) is an exciting research area that can reveal valuable knowledge from educational databases. This knowledge can be used for many purposes, including identifying dropouts or weak students who need…
Descriptors: Information Retrieval, Data Analysis, Data Use, Prediction
Hussain, Asif; Khan, Muzammil; Ullah, Kifayat – Education and Information Technologies, 2022
Educational institutions are creating a considerable amount of data regarding students, faculty and related organs. This data is an essential asset for academic institutions as it has valuable insights, knowledge and intelligence for the policymakers. Students are the fundamental entities and primary source of data creation in any educational…
Descriptors: Data Analysis, Artificial Intelligence, Prediction, Academic Achievement
Wudhijaya Philuek – Asian Journal of Education and Training, 2024
The objectives of this research were 1) to study the problems of stress and depression among Grade 12 students; 2) to investigate the machine learning technique in analyzing and predicting stress, depression, and academic performance among Grade 12 students; and 3) to evaluate the stress and depression prediction platform. Students from schools in…
Descriptors: Artificial Intelligence, Stress Variables, Depression (Psychology), Academic Achievement
Achmad Bisri; Supardi; Yayu Heryatun; Hunainah; Annisa Navira – Journal of Education and Learning (EduLearn), 2025
In the educational landscape, educational data mining has emerged as an indispensable tool for institutions seeking to deliver exceptional and high-quality education. However, education data revealed suboptimal academic performance among a significant portion of the student population, which consequently resulted in delayed graduation. This…
Descriptors: Data Analysis, Models, Academic Achievement, Evaluation Methods
Khan, Anupam; Ghosh, Soumya K. – Education and Information Technologies, 2021
Student performance modelling is one of the challenging and popular research topics in educational data mining (EDM). Multiple factors influence the performance in non-linear ways; thus making this field more attractive to the researchers. The widespread availability of educational datasets further catalyse this interestingness, especially in…
Descriptors: Academic Achievement, Prediction, Data Analysis, Meta Analysis