NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 20 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Qin; Mousavi, Amin – British Journal of Educational Technology, 2023
Technologies and teaching practices can provide a rich log data, which enables learning analytics (LA) to bring new insights into the learning process for ultimately enhancing student success. This type of data has been used to discover student online learning patterns, relationships between online learning behaviors and assessment performance.…
Descriptors: Predictor Variables, Academic Achievement, Literature Reviews, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ali Alshammari – Education and Information Technologies, 2024
In online education, it is widely recognized that interaction and engagement have an impact on students' academic performance. While previous research has extensively explored interactions between students, instructors, and content, there has been limited exploration of course design elements that promote the fourth type of interaction:…
Descriptors: Learning Analytics, Learning Management Systems, Academic Achievement, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
MD, Soumya; Krishnamoorthy, Shivsubramani – Education and Information Technologies, 2022
In recent times, Educational Data Mining and Learning Analytics have been abundantly used to model decision-making to improve teaching/learning ecosystems. However, the adaptation of student models in different domains/courses needs a balance between the generalization and context specificity to reduce the redundancy in creating domain-specific…
Descriptors: Predictor Variables, Academic Achievement, Higher Education, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Sudeshna Pal; Patsy Moskal; Anchalee Ngampornchai – International Journal on E-Learning, 2024
This study investigated the effectiveness of blended instruction in enhancing student success in an advanced undergraduate engineering course. The research used learning analytics captured from pre-recorded lecture videos, course grade data, and student surveys. Results revealed positive correlations between lecture video viewership and course…
Descriptors: Blended Learning, Advanced Courses, Engineering Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
So, Joseph Chi-Ho; Ho, Yik Him; Wong, Adam Ka-Lok; Chan, Henry C. B.; Tsang, Kia Ho-Yin; Chan, Ada Pui-Ling; Wong, Simon Chi-Wang – IEEE Transactions on Learning Technologies, 2023
Generic competence (GC) development is an integral part of higher education to provide holistic education and enhance student career development. It also plays a critical role in complementing the curriculum. Many tertiary institutions provide various GC development activities (GCDA). Moreover, institutions strongly need to further understand…
Descriptors: Predictor Variables, Higher Education, Online Courses, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Aom Perkash; Qaisar Shaheen; Robina Saleem; Furqan Rustam; Monica Gracia Villar; Eduardo Silva Alvarado; Isabel de la Torre Diez; Imran Ashraf – Education and Information Technologies, 2024
Developing tools to support students, educators, intuitions, and government in the educational environment has become an important task to improve the quality of education and learning outcomes. Information and communication technology (ICT) is adopted by educational institutions; one such instance is video interaction in flipped teaching.…
Descriptors: Academic Achievement, Colleges, Artificial Intelligence, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Tsiakmaki, Maria; Kostopoulos, Georgios; Kotsiantis, Sotiris; Ragos, Omiros – Journal of Computing in Higher Education, 2021
Predicting students' learning outcomes is one of the main topics of interest in the area of Educational Data Mining and Learning Analytics. To this end, a plethora of machine learning methods has been successfully applied for solving a variety of predictive problems. However, it is of utmost importance for both educators and data scientists to…
Descriptors: Active Learning, Predictor Variables, Academic Achievement, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Shuang; Wang, Shuang; Du, Junlei; Pei, Yu; Shen, Xinyi – Journal of Computer Assisted Learning, 2022
Background: Failure to effectively organize and manage learning time is an important factor influencing online learners' performance. Investigation of time-investment patterns for online learning will provide educators with useful knowledge of how learners engage in and regulate their online learning and support them in tailoring online course…
Descriptors: Online Courses, Time Management, Time Factors (Learning), Learning Strategies
Mohammed Alzaid – ProQuest LLC, 2022
Distributed self-assessments and reflections empower learners to take the lead on their knowledge gaining evaluation. Both provide essential elements for practice and self-regulation in learning settings. Nowadays, many sources for practice opportunities are made available to the learners, especially in the Computer Science (CS) and programming…
Descriptors: Learning Analytics, Self Evaluation (Individuals), Programming, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, Tanner; Ozogul, Gamze – TechTrends: Linking Research and Practice to Improve Learning, 2020
In this study the authors conducted an empirical, bibliometric analysis of current literature in learning analytics. The authors performed a citation network analysis and found three dominant clusters of research. A qualitative thematic review of publications in these clusters revealed distinct context, goals, and topics. The largest cluster…
Descriptors: Learning Analytics, Educational Research, Bibliometrics, Citation Analysis
Morenike Adebodun – ProQuest LLC, 2020
The purpose of this study was to examine the predictive power of Academic and Learning Analytics models on the persistence, retention, and graduation rates for students enrolled in higher education institutions in the United States. Specifically, this study is concerned with the relationships between the present usage of Academic and Learning…
Descriptors: Predictor Variables, Learning Analytics, Academic Achievement, Higher Education
Rina Levy Cohen – ProQuest LLC, 2022
The aim of this study was to examine the relationship between common classroom help-seeking determinants (achievement goals, self-efficacy, prior knowledge, gender, and help-seeking perceptions) and help-seeking behaviors online (hint use percentage, latency of help seeking, answer attempt percentage, feedback level percentage, and seeking help…
Descriptors: Correlation, Help Seeking, Self Efficacy, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Saqr, Mohammed; Jovanovic, Jelena; Viberg, Olga; Gaševic, Dragan – Studies in Higher Education, 2022
Predictors of student academic success do not always replicate well across different learning designs, subject areas, or educational institutions. This suggests that characteristics of a particular discipline and learning design have to be carefully considered when creating predictive models in order to scale up learning analytics. This study…
Descriptors: Meta Analysis, Learning Analytics, Predictor Variables, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Foung, Dennis; Chen, Julia; Cheung, Kin – International Journal of Educational Technology in Higher Education, 2023
College transfer students are those who follow a different trajectory in their higher education journeys than traditional students, completing a sub-degree before pursuing a bachelor's degree at a university. While the possibility of transferring makes higher education accessible to these students, previous studies have found that they face…
Descriptors: College Transfer Students, Student Needs, Barriers, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Kokoç, Mehmet; Kara, Mehmet – Educational Technology & Society, 2021
The purposes of the two studies reported in this research are to adapt and validate the instrument of the Evaluation Framework for Learning Analytics (EFLA) for learners into the Turkish context, and to examine how metacognitive and behavioral factors predict learner performance. Study 1 was conducted with 83 online learners enrolled in a 16-week…
Descriptors: Learning Analytics, Electronic Learning, Measures (Individuals), Test Validity
Previous Page | Next Page »
Pages: 1  |  2