Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 13 |
Since 2016 (last 10 years) | 14 |
Since 2006 (last 20 years) | 14 |
Descriptor
Academic Achievement | 14 |
Learning Analytics | 14 |
Student Characteristics | 14 |
Foreign Countries | 7 |
Gender Differences | 7 |
Prediction | 7 |
Grades (Scholastic) | 6 |
Accuracy | 4 |
Artificial Intelligence | 4 |
College Students | 4 |
Grade Point Average | 4 |
More ▼ |
Source
Author
Anchalee Ngampornchai | 1 |
Annika Rigole | 1 |
Cam, Emre | 1 |
Chen, George | 1 |
Cohausz, Lea | 1 |
Ean Teng Khor | 1 |
Fikes, Tom | 1 |
Haelermans, Carla | 1 |
Harrison, Scott | 1 |
Hellings, Jan | 1 |
Jamiu Adekunle Idowu | 1 |
More ▼ |
Publication Type
Reports - Research | 13 |
Journal Articles | 12 |
Information Analyses | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 12 |
Postsecondary Education | 12 |
Elementary Education | 1 |
Elementary Secondary Education | 1 |
Grade 7 | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Sudeshna Pal; Patsy Moskal; Anchalee Ngampornchai – International Journal on E-Learning, 2024
This study investigated the effectiveness of blended instruction in enhancing student success in an advanced undergraduate engineering course. The research used learning analytics captured from pre-recorded lecture videos, course grade data, and student surveys. Results revealed positive correlations between lecture video viewership and course…
Descriptors: Blended Learning, Advanced Courses, Engineering Education, Undergraduate Students
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Hellings, Jan; Haelermans, Carla – Higher Education: The International Journal of Higher Education Research, 2022
We use a randomised experiment to study the effect of offering half of 556 freshman students a learning analytics dashboard and a weekly email with a link to their dashboard, on student behaviour in the online environment and final exam performance. The dashboard shows their online progress in the learning management systems, their predicted…
Descriptors: Learning Analytics, College Freshmen, Student Behavior, Electronic Learning
Jamiu Adekunle Idowu – International Journal of Artificial Intelligence in Education, 2024
This systematic literature review investigates the fairness of machine learning algorithms in educational settings, focusing on recent studies and their proposed solutions to address biases. Applications analyzed include student dropout prediction, performance prediction, forum post classification, and recommender systems. We identify common…
Descriptors: Algorithms, Dropouts, Prediction, Academic Achievement
Yuanlan Jiang; Jian-E Peng – Computer Assisted Language Learning, 2025
Language learner engagement, which is receiving increased attention, has predominantly focused on offline classroom contexts, while learner engagement in language Massive Open Online Courses (LMOOCs) remains under-explored. This study was conducted on a College English MOOC with the purpose of examining learner engagement and its relations with…
Descriptors: Learner Engagement, Personal Autonomy, Second Language Learning, Second Language Instruction
Cam, Emre; Ozdag, Muhammet Esat – Malaysian Online Journal of Educational Technology, 2021
This study aims at finding out students' course success in vocational courses of computer and instructional technologies department by means of machine learning algorithms. In the scope of the study, a dataset was formed with demographic information and exam scores obtained from the students studying in the Department of Computer Education and…
Descriptors: Artificial Intelligence, Academic Achievement, Mathematics, Computer Science Education
Meaney, Michael J.; Fikes, Tom – Journal of Learning Analytics, 2023
This paper leverages cluster analysis to provide insight into how traditionally underrepresented learners engage with entry-level massive open online courses (MOOCs) intended to lower the barrier to university enrolment, produced by a major research university in the United States. From an initial sample of 260,239 learners, we cluster analyze a…
Descriptors: MOOCs, Ethics, Equal Education, Socioeconomic Status
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Cohausz, Lea – Journal of Educational Data Mining, 2022
Student success and drop-out predictions have gained increased attention in recent years, connected to the hope that by identifying struggling students, it is possible to intervene and provide early help and design programs based on patterns discovered by the models. Though by now many models exist achieving remarkable accuracy-values, models…
Descriptors: Guidelines, Academic Achievement, Dropouts, Prediction
Ong, Nathan; Zhu, Jiaye; Mossé, Daniel – International Educational Data Mining Society, 2022
Student grade prediction is a popular task for learning analytics, given grades are the traditional form of student performance. However, no matter the learning environment, student background, or domain content, there are things in common across most experiences in learning. In most previous machine learning models, previous grades are considered…
Descriptors: Prediction, Grades (Scholastic), Learning Analytics, Student Characteristics
Harrison, Scott; Villano, Renato; Lynch, Grace; Chen, George – Journal of Learning Analytics, 2021
Early alert systems (EAS) are an important technological tool to help manage and improve student retention. Data spanning 16,091 students over 156 weeks was collected from a regionally based university in Australia to explore various microeconometric approaches that establish links between EAS and student retention outcomes. Controlling for…
Descriptors: Learning Analytics, School Holding Power, Integrated Learning Systems, Microeconomics
Mozahem, Najib Ali – International Journal of Mobile and Blended Learning, 2020
Higher education institutes are increasingly turning their attention to web-based learning management systems. The purpose of this study is to investigate whether data collected from LMS can be used to predict student performance in classrooms that use LMS to supplement face-to-face teaching. Data was collected from eight courses spread across two…
Descriptors: Integrated Learning Systems, Data Use, Prediction, Academic Achievement
Tatel, Corey E.; Lyndgaard, Sibley F.; Kanfer, Ruth; Melkers, Julia E. – Journal of Learning Analytics, 2022
As the demand for lifelong learning increases, many working adults have turned to online graduate education in order to update their skillsets and pursue advanced credentials. Simultaneously, the volume of data available to educators and scholars interested in online learning continues to rise. This study seeks to extend learning analytics…
Descriptors: Course Selection (Students), Enrollment Trends, Academic Achievement, Learning Analytics
Annika Rigole; Sonakshi Sharma; Jessica Bergmann – UNICEF Innocenti - Global Office of Research and Foresight, 2023
Recognizing that children's learning outcomes generally remain low, in its recent 2017--2021 Education and Skills Sector Plan (ESSP) the Government of Zambia prioritized improving learning outcomes through strategies that addressed gaps in education system quality, access, equity and efficiency. What resources and contextual factors are associated…
Descriptors: School Effectiveness, Outcomes of Education, Educational Strategies, Access to Education