NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Kaplan, David; Chen, Jianschen; Yavuz, Sinan; Lyu, Weicong – Grantee Submission, 2022
The purpose of this paper is to demonstrate and evaluate the use of "Bayesian dynamic borrowing"(Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian hierarchical models is a special case…
Descriptors: Bayesian Statistics, Models, Prediction, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Buyukatak, Emrah; Anil, Duygu – International Journal of Assessment Tools in Education, 2022
The purpose of this research was to determine classification accuracy of the factors affecting the success of students' reading skills based on PISA 2018 data by using Artificial Neural Networks, Decision Trees, K-Nearest Neighbor, and Naive Bayes data mining classification methods and to examine the general characteristics of success groups. In…
Descriptors: Classification, Accuracy, Reading Tests, Achievement Tests
Jing Lu; Chun Wang; Jiwei Zhang; Xue Wang – Grantee Submission, 2023
Changepoints are abrupt variations in a sequence of data in statistical inference. In educational and psychological assessments, it is pivotal to properly differentiate examinees' aberrant behaviors from solution behavior to ensure test reliability and validity. In this paper, we propose a sequential Bayesian changepoint detection algorithm to…
Descriptors: Bayesian Statistics, Behavior Patterns, Computer Assisted Testing, Accuracy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wu, Mike; Davis, Richard L.; Domingue, Benjamin W.; Piech, Chris; Goodman, Noah – International Educational Data Mining Society, 2020
Item Response Theory (IRT) is a ubiquitous model for understanding humans based on their responses to questions, used in fields as diverse as education, medicine and psychology. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving test scoring and better informing public policy. Yet larger…
Descriptors: Item Response Theory, Accuracy, Data Analysis, Public Policy