NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Gani, Mohammed Osman; Ayyasamy, Ramesh Kumar; Sangodiah, Anbuselvan; Fui, Yong Tien – Education and Information Technologies, 2023
The automated classification of examination questions based on Bloom's Taxonomy (BT) aims to assist the question setters so that high-quality question papers are produced. Most studies to automate this process adopted the machine learning approach, and only a few utilised the deep learning approach. The pre-trained contextual and non-contextual…
Descriptors: Models, Artificial Intelligence, Natural Language Processing, Writing (Composition)
Peer reviewed Peer reviewed
Direct linkDirect link
Zaki, Nazar; Turaev, Sherzod; Shuaib, Khaled; Krishnan, Anusuya; Mohamed, Elfadil – Education and Information Technologies, 2023
Quality control and assurance plays a fundamental role within higher education contexts. One means by which quality control can be performed is by mapping the course learning outcomes (CLOs) to the program learning outcomes (PLO). This paper describes a system by which this mapping process can be automated and validated. The proposed AI-based…
Descriptors: Program Evaluation, Outcomes of Education, Natural Language Processing, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Shannag, Fatima; Hammo, Bassam H.; Faris, Hossam – Education and Information Technologies, 2022
Cyberbullying (CB) is classified as one of the severe misconducts on social media. Many CB detection systems have been developed for many natural languages to face this phenomenon. However, Arabic is one of the under-resourced languages suffering from the lack of quality datasets in many computational research areas. This paper discusses the…
Descriptors: Bullying, Computer Mediated Communication, Social Media, Arabic
Peer reviewed Peer reviewed
Direct linkDirect link
Yunus Kökver; Hüseyin Miraç Pektas; Harun Çelik – Education and Information Technologies, 2025
This study aims to determine the misconceptions of teacher candidates about the greenhouse effect concept by using Artificial Intelligence (AI) algorithm instead of human experts. The Knowledge Discovery from Data (KDD) process model was preferred in the study where the Analyse, Design, Develop, Implement, Evaluate (ADDIE) instructional design…
Descriptors: Artificial Intelligence, Misconceptions, Preservice Teachers, Natural Language Processing