NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 3 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Firoozi, Tahereh; Bulut, Okan; Epp, Carrie Demmans; Naeimabadi, Ali; Barbosa, Denilson – Journal of Applied Testing Technology, 2022
Automated Essay Scoring (AES) using neural networks has helped increase the accuracy and efficiency of scoring students' written tasks. Generally, the improved accuracy of neural network approaches has been attributed to the use of modern word embedding techniques. However, which word embedding techniques produce higher accuracy in AES systems…
Descriptors: Computer Assisted Testing, Scoring, Essays, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Micir, Ian; Swygert, Kimberly; D'Angelo, Jean – Journal of Applied Testing Technology, 2022
The interpretations of test scores in secure, high-stakes environments are dependent on several assumptions, one of which is that examinee responses to items are independent and no enemy items are included on the same forms. This paper documents the development and implementation of a C#-based application that uses Natural Language Processing…
Descriptors: Artificial Intelligence, Man Machine Systems, Accuracy, Efficiency
Peer reviewed Peer reviewed
Direct linkDirect link
Mead, Alan D.; Zhou, Chenxuan – Journal of Applied Testing Technology, 2022
This study fit a Naïve Bayesian classifier to the words of exam items to predict the Bloom's taxonomy level of the items. We addressed five research questions, showing that reasonably good prediction of Bloom's level was possible, but accuracy varies across levels. In our study, performance for Level 2 was poor (Level 2 items were misclassified…
Descriptors: Artificial Intelligence, Prediction, Taxonomy, Natural Language Processing